@article{VTPMK_2017_1_a0,
author = {A. Yu. Zaspa and O. V. Shestakov},
title = {Consistency of the risk estimate of the multiple hypothesis testing with the {FDR} threshold},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--16},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a0/}
}
TY - JOUR AU - A. Yu. Zaspa AU - O. V. Shestakov TI - Consistency of the risk estimate of the multiple hypothesis testing with the FDR threshold JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2017 SP - 5 EP - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a0/ LA - ru ID - VTPMK_2017_1_a0 ER -
%0 Journal Article %A A. Yu. Zaspa %A O. V. Shestakov %T Consistency of the risk estimate of the multiple hypothesis testing with the FDR threshold %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2017 %P 5-16 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a0/ %G ru %F VTPMK_2017_1_a0
A. Yu. Zaspa; O. V. Shestakov. Consistency of the risk estimate of the multiple hypothesis testing with the FDR threshold. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2017), pp. 5-16. http://geodesic.mathdoc.fr/item/VTPMK_2017_1_a0/
[1] Donoho D., Johnstone I. M., “Ideal spatial adaptation via wavelet shrinkage”, Biometrika, 81:3 (1994), 425-455 | DOI | MR | Zbl
[2] Donoho D., Johnstone I., “Adapting to unknown smoothness via wavelet shrinkage”, Journal of the American Statistical Association, 90 (1995), 1200-1224 | DOI | MR | Zbl
[3] Donoho D., Johnstone I. M., “Minimax estimation via wavelet shrinkage”, Annals of Statistics, 26:3 (1998), 879-921 | DOI | MR | Zbl
[4] Jansen M., Noise Reduction by Wavelet Thresholding, Lecture Notes in Statistics, 161, Springer, New York, 2001 | DOI | MR | Zbl
[5] Markin A. V., Shestakov O. V., “Consistency of risk estimation with thresholding of wavelet coefficients”, Moscow University Computational Mathematics and Cybernetics, 34:1 (2010), 22-30 | DOI | MR | Zbl
[6] Shestakov O. V., “Asymptotic normality of adaptive wavelet thresholding risk estimation”, Doklady Mathematics, 86:1 (2012), 556-558 | DOI | MR | Zbl
[7] Shestakov O. V., “Central limit theorem for generalized cross-validation function in wavelet thresholding method”, Informatics and its Applications, 7:2 (2013), 40-49 (in Russian)
[8] Shestakov O. V., “On the strong consistency of the adaptive risk estimator for wavelet thresholding”, Journal of Mathematical Sciences, 214:1 (2016), 115-118 | DOI | MR | Zbl
[9] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, NY, 1999, 857 pp. | MR | Zbl
[10] Benjamini Y., Hochberg Y., “Controlling the false discovery rate: a practical and powerful approach to multiple testing”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 57 (1995), 289-300 | MR | Zbl
[11] Abramovich F., Benjamini Y., Donoho D., Johnstone I., “Adapting to unknown sparsity by controlling the false discovery rate”, Annals of Statistics, 34:2 (2006), 584-653 | DOI | MR | Zbl
[12] Hoeffding W., “Probability inequalities for sums of bounded random variables”, Journal of the American Statistical Association, 58:301 (1963), 13-30 | DOI | MR | Zbl