Optimal reinsurance in the model with several risks within one insurance policy
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2016), pp. 79-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the model of insurance company performance that issues insurance policies covering several risks. Each risk can be reinsured according to the arbitrary reinsurance treaty. Parameters of such reinsurance treaties can be changed dynamically. The main aim is to find an optimal reinsurance strategy that maximises the probability of survival of the insurance company. The Hamilton–Jacobi–Bellman equation for this problem is deduced and existence and uniqueness of its solution are proved. We also establish the optimal reinsurance strategy and give numerical results for the special case of claim distribution.
Keywords: multiple peril insurance, reinsurance, survival probability, Hamilton-Jacobi-Bellman equation, optimal control.
@article{VTPMK_2016_4_a5,
     author = {A. A. Muromskaya},
     title = {Optimal reinsurance in the model with several risks within one insurance policy},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {79--97},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a5/}
}
TY  - JOUR
AU  - A. A. Muromskaya
TI  - Optimal reinsurance in the model with several risks within one insurance policy
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 79
EP  - 97
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a5/
LA  - ru
ID  - VTPMK_2016_4_a5
ER  - 
%0 Journal Article
%A A. A. Muromskaya
%T Optimal reinsurance in the model with several risks within one insurance policy
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 79-97
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a5/
%G ru
%F VTPMK_2016_4_a5
A. A. Muromskaya. Optimal reinsurance in the model with several risks within one insurance policy. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2016), pp. 79-97. http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a5/

[1] Schmidli H., “Optimal proportional reinsurance policies in a dynamic setting”, Scandinavian Actuarial Journal, 2001, no. 1, 55–68 | DOI | MR | Zbl

[2] Hipp C., Vogt M., “Optimal dynamic XL reinsurance”, ASTIN Bulletin, 2003, no. 33, 193–207 | DOI | MR | Zbl

[3] Gromov A. N., “Optimal XL reinsurance strategies”, Moscow University Mathematics Bulletin, 66:4 (2011), 153–157 | DOI | MR | Zbl

[4] Li Y., Liu G., “Dynamic proportional reinsurance and approximations for ruin probabilities in the two-dimensional compound Poisson risk model”, Discrete Dynamics in Nature and Society, 2012, 1–26 | MR

[5] Schmidli H., Lecture Notes on Risk Theory, Institute of Mathematics, University of Cologne, Cologne, 2000, 216 pp.

[6] Rolski T., Schmidli H., Schmidt V., Teugels J. L., Stochastic Processes for Insurance and Finance, Wiley, Chichester, 1999, 680 pp. | MR | Zbl

[7] Schmidli H., Stochastic Control in Insurance, Springer-Verlag, London, 2008, 258 pp. | MR | Zbl