Circular orbits around gravitating configurations of phantom scalar fields
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2016), pp. 61-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we consider general properties of circular orbits in the neighborhood of spherically symmetric static configurations of gravitating phantom scalar fields. In this case the metric area function $C(r)$ (in the quasiglobal coordinates) completely determines the type of a configuration (black hole, naked singularity, wormhole). In any of these cases stable circular orbits can exist only in the region $r\geqslant 3m,\, r\geqslant r_0$, where $r_0$ is a unique minimum point of the function $C(r)$, and $m$ is the mass of the configuration. Wormholes that are symmetric relative to the throat, and topological geons can have circular orbits only on their throats or on the corresponding topological surfaces; at that, possible values of specific angular momentums on the corresponding stable orbits are bounded from above. We also present a classification of the gravitating configurations according to type of their innermost stable circular orbits.
Keywords: innermost stable circular orbit, phantom scalar field, black hole, wormhole, topological geon.
@article{VTPMK_2016_4_a4,
     author = {V. V. Nikonov and I. M. Potashov and A. N. Tsirulev and Yu. V. Tchemarina},
     title = {Circular orbits around gravitating configurations of phantom scalar fields},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {61--78},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a4/}
}
TY  - JOUR
AU  - V. V. Nikonov
AU  - I. M. Potashov
AU  - A. N. Tsirulev
AU  - Yu. V. Tchemarina
TI  - Circular orbits around gravitating configurations of phantom scalar fields
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 61
EP  - 78
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a4/
LA  - ru
ID  - VTPMK_2016_4_a4
ER  - 
%0 Journal Article
%A V. V. Nikonov
%A I. M. Potashov
%A A. N. Tsirulev
%A Yu. V. Tchemarina
%T Circular orbits around gravitating configurations of phantom scalar fields
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 61-78
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a4/
%G ru
%F VTPMK_2016_4_a4
V. V. Nikonov; I. M. Potashov; A. N. Tsirulev; Yu. V. Tchemarina. Circular orbits around gravitating configurations of phantom scalar fields. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2016), pp. 61-78. http://geodesic.mathdoc.fr/item/VTPMK_2016_4_a4/

[1] Vincent F. H., Paumard T., Perrin G., Mugnier L., Eisenhauer F., Gillessen S., “Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the galactic centre black hole”, Monthly Notices of the Royal Astronomical Society, 412:4 (2011), 2653–2664 | DOI

[2] McClintock J. E., Narayan R., Davis S. W., Gou L., Kulkarni A., Orosz J. A., Penna R. F., Remillard R. A., Steiner J. F., “Measuring the spins of accreting black holes”, Classical and Quantum Gravity, 28:11 (2011), 114009, arXiv: 1101.0811v2 | DOI | MR | Zbl

[3] Torres D. F., “Accretion disc onto a static non-baryonic compact object”, Nuclear Physics B, 626:1-2 (2002), 377–394, arXiv: hep-ph/0201154 | DOI

[4] Abramowicz M. A., Jaroszynski M., Kato S., Lasota J. P., Rozanska A., Sadowski A., “Leaving the ISCO: the inner edge of a black-hole accretion disk at various luminosities”, Astronomy Astrophysics, 521 (2010), A15 | DOI

[5] Schunck F. E., A matter model for dark halos of galaxies and quasars, Fermilab preprint, FINAL FPRINT-95-10, 1994

[6] Mielke E. W., Fuchs B., Schunck F. E., “Dark matter halos as Bose-Einstein condensates”, Proceedings of the 10th Marcel Grossmann Meeting, 2006, 39–58 | DOI | Zbl

[7] Matos T., Guzmán F. S., “On the space time of a galaxy”, Classical and Quantum Gravity, 18 (2001), 5055 | DOI | MR | Zbl

[8] Visser M., Lorentzian wormholes: from Einstein to Hawking, AIP Press, New York, 1995 | MR

[9] Sorkin R. D., “Introduction to topological geons”, Proceedings of the Topological Properties and Global Structure of Space-Time (Erice, Italy, May 12-22, 1985), eds. P.G. Bergmann, V. de Sabbata, 249–270 | MR | Zbl

[10] Tsirulev A. N., Chemarina Yu. V., “The spherically symmetrical topological geons”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 6, 61–70 (in Russian)

[11] Sakellariadou M., “Production of Topological Defects at the End of Inflation”, Lecture Notes in Physics, 738, 2008, 359–392, arXiv: hep-th/0702003 | DOI | Zbl

[12] Bronnikov K. A., Fabris J. C., “Regular phantom black holes”, Physical Review Letters, 96 (2006), 251101, arXiv: gr-qc/0511109 | DOI | MR | Zbl

[13] «RadioAstron» project web-site (in Russian ) http://www.asc.rssi.ru/radioastron

[14] Kardashev N. S., Novikov I. D., Shatskiy A. A., “Astrophysics of Wormholes”, International Journal of Modern Physics D, 16:5 (2007), 909–926, arXiv: astro-ph/0610441 | DOI | Zbl

[15] Novikov I. D., Kardashev N. S., Shatskii A. A., “The multicomponent Universe and the astrophysics of wormholes”, Physics-Uspekhi, 50:9 (2007), 965–971

[16] Cherepashchuk A. M., “Search for black holes”, Physics-Uspekhi, 46:4 (2003), 335–371 | DOI | DOI

[17] Chandrasekar S., The mathematical Theory of Black Holes, Nauka Publ., Moscow, 1989 (in Russian)

[18] Vieira R. S. S., Schee J., Kluźniak W., Stuchlík Z., Abramowicz M., “Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Hor̆ava’s gravity”, Physical Review D - Particles, Fields, Gravitation and Cosmology, 90 (2014), 024035, arXiv: 1311.5820 | DOI

[19] Dennhardt H., Lechtenfeld O., “Scalar Deformations of Schwarzschild Holes and their stability”, International Journal of Modern Physics A, 13:5 (1998), 741–764, arXiv: gr-qc/9612062 | DOI | MR | Zbl

[20] Bronnikov K. A., Shikin G. N., “Spherically symmetric scalar vacuum: no-go theorems, black holes and solitons”, Gravitation Cosmology, 8 (2002), 107–116 | MR | Zbl

[21] Nikonov V. V., Tchemarina Ju. V., Tsirulev A. N., “A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations”, Classical and Quantum Gravity, 25 (2008), 138001 | DOI | MR | Zbl

[22] Tchemarina Ju. V., Tsirulev A. N., “Spherically symmetric gravitating scalar field. The inverse problem and exact solutions”, Gravitation and Cosmology, 15 (2009), 94–95 | DOI | MR | Zbl

[23] Azrez-A\"inou M., “Selection criteria for two-parameter solutions to scalar-tensor gravity”, General Relativity and Gravitation, 42 (2010), 1427–1456, arXiv: 0912.1722 | DOI | MR

[24] Solovyev D. A., Tsirulev A. N., “General properties and exact models of static selfgravitating scalar field configurations”, Classical and Quantum Gravity, 29 (2012), 055013 | DOI | MR | Zbl

[25] Nikonov V. V., Potashov I. M., Tsirulev A. N., “Circular orbits around static self-gravitating scalar field configurations”, Mathematical Modelling and Geometry, 4:2 (2016), 10–32 http://mmg.tversu.ru/images/publications/2016-vol4-n2/Nikonov-Article.pdf

[26] Bronnikov K. A., Rubin S. G., Black holes, cosmology and extra dimensions, World Scientific, Singapore, 2012 | DOI

[27] Ono T., Suzuki T., Fushimi N., Asada H., Yamada K., “Application of Sturm’s theorem to marginal stable circular orbits of a test body in spherically symmetric and static spacetimes”, EPL, 111:3 (2015), 30008, arXiv: 1508.00101 | DOI

[28] Solovyov D. A., Tsirulev A. N., Chemarina Yu. V., “Mathematical models of a gravitating configurations with a phantom scalar field”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 14:23 (2011), 7–18 (in Russian) ; Errata, Journal of Mathematical Physics, 15 (1974), 520 | MR

[29] Ellis H. G., “Ether flow through a drainhole: a particle model in general relativity”, Journal of Mathematical Physics, 14 (1974), 104–118 | DOI | MR