Method of routing with obstacles based on parallel computing
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 85-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new effective method of finding the minimal geodesic path in a 2D environment with polygonal obstacles. We describe continuous solution that uses visibility graph for polygonal obstacles. The problem of binary image vectorization and approximation is solved with a controlled accuracy. GPU computation is used to speed up the calculations.
Keywords: pathfinding, environment with obstacles, vectorization of images, visibility graph, GPU, technology CUDA.
@article{VTPMK_2016_3_a6,
     author = {K. A. Zaeva and A. B. Semenov},
     title = {Method of routing with obstacles based on parallel computing},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {85--95},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a6/}
}
TY  - JOUR
AU  - K. A. Zaeva
AU  - A. B. Semenov
TI  - Method of routing with obstacles based on parallel computing
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 85
EP  - 95
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a6/
LA  - ru
ID  - VTPMK_2016_3_a6
ER  - 
%0 Journal Article
%A K. A. Zaeva
%A A. B. Semenov
%T Method of routing with obstacles based on parallel computing
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 85-95
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a6/
%G ru
%F VTPMK_2016_3_a6
K. A. Zaeva; A. B. Semenov. Method of routing with obstacles based on parallel computing. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 85-95. http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a6/

[1] Asano T., Asano T., Guibas L. J., Hershberger J., Imai H., “Visibility of disjoint polygons”, Algorithmica, 1:1 (1986), 49–63 | DOI | MR | Zbl

[2] Berg M., Cheong O., Kreveld M., Overmars M., Computational Geometry: Algorithms and Applications, Third Edition, Springer-Verlag, Berlin, 2008 | Zbl

[3] Kitzinger J., The Visibility Graph Among Polygonal Obstacles: A Comparison of Algorithms, University of New Mexico, 2003

[4] Mehlhorn K., Data Structures and Algorithms 3. Multi-dimensional Searching and Computational Geometry, Monographs in Theoretical Computer Science. An EATCS Series, 3, Springer-Verlag, Berlin, 1984 | MR | Zbl

[5] B. Stout, Algoritmy poiska puti, perev. na russk. yazyk Kamenskii M. , 2000 http://pmg.org.ru/ai/stout.htm

[6] Wikipedia contributors. Tree rotation, The Free Encyclopedia , 2015 http://en.wikipedia.org/wiki/Tree_rotation

[7] Boreskov A. V., Kharlamov A. A., Fundamentals of CUDA Technology, DMK Press Publ., Moscow, 2010 (in Russian)

[8] Zaeva K. A., Semenov A. B., “Search engine of the minimal path in an environment with polygonal obstacles”, Proceedings of the 24th International Conference GraphiCon 2014 (Yuzhnyi federal'nyi universitet, Rostov-na-Donu, 2014), 2014, 163-166 (in Russian)

[9] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to Algorithms, 3rd Edition, The MIT Press, Cambridge, Massachusetts, 2009, 1313 pp. | MR

[10] Mestetskii L. M., “Continuous skeleton of a binary raster image”, Proceedings of the 8th International Conference GraphiCon 98 (Moscow State University, Moscow, 1998) (in Russian)

[11] Orlov S. A., Tsil'ker B. Ya., Organization of computers and systems, Textbook for high schools, Piter Publ., Saint-Petersburg, 2011 (in Russian)

[12] Semenov A. B., “A new approach in the design of script fonts”, Proceedings of the 18th International Conference GraphiCon 2008 (Moscow State University, Moscow, 2008) (in Russian)