On symmetry of projective curves
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 59-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The known methods to find symmetry for convex ovals have been extended for a new class of plane projective curves, including real cubic curves. The proposed method uses only the description of tangent lines, but does not require the calculation of the curvature. This approach increases the accuracy of the calculations and allows you to use graphical methods. The recognition of symmetrically arranged points allows to coordinate pictures taken from different angles, as we study the symmetry of projective curves. The results can be used to illustrate the methods of descriptive geometry.
Keywords: symmetry, projective curve, descriptive geometry, graphics, pattern recognition.
@article{VTPMK_2016_3_a4,
     author = {A. V. Seliverstov},
     title = {On symmetry of projective curves},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {59--66},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a4/}
}
TY  - JOUR
AU  - A. V. Seliverstov
TI  - On symmetry of projective curves
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 59
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a4/
LA  - ru
ID  - VTPMK_2016_3_a4
ER  - 
%0 Journal Article
%A A. V. Seliverstov
%T On symmetry of projective curves
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 59-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a4/
%G ru
%F VTPMK_2016_3_a4
A. V. Seliverstov. On symmetry of projective curves. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 59-66. http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a4/