On spherical functions for Stokes system
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 35-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article investigates the stationary three-dimensional problem of flow around a finite body of a viscous incompressible fluid. Scale of functional spaces, which belong to the physically realizable solution, is selected. The problem is considered in the linearized formulation for the case where the flow velocity tends to zero at infinity. Class of functions in the right part of the equations of motion, which satisfy this condition, is described. Examples are provided.
Keywords: exterior Stokes problem, non-Newtonian fluid, spherical functions, сompatibility condition
Mots-clés : Legendre polynomials.
@article{VTPMK_2016_3_a2,
     author = {I. V. Zakharova},
     title = {On spherical functions for {Stokes} system},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {35--46},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a2/}
}
TY  - JOUR
AU  - I. V. Zakharova
TI  - On spherical functions for Stokes system
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 35
EP  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a2/
LA  - ru
ID  - VTPMK_2016_3_a2
ER  - 
%0 Journal Article
%A I. V. Zakharova
%T On spherical functions for Stokes system
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 35-46
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a2/
%G ru
%F VTPMK_2016_3_a2
I. V. Zakharova. On spherical functions for Stokes system. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 35-46. http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a2/

[1] Litvinov V. G., The Movement of a Nonlinear Viscous Fluid, “Nauka” Publ., Moscow, 1982, 376 pp. (in Russian) | MR

[2] Finn R., “On the exterior srationary problem for the Navier-Stokes equations, and associated perturbation problem”, Archive for Rational Mechanics and Analysis, 19 (1965), 363–406 | DOI | MR | Zbl

[3] Zakharova I. V., “Investigation of stationary problem of flow past a finite body of a viscous non-Newtonian fluid”, Review of Applied and Industrial Mathematics, 9:1 (2002), 193–194 (in Russian)

[4] Zakharova I. V., “Uniqueness of the solution of the problem of flow past a finite body by steady flow of non-Newtonian fluid”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 7, 61–88 (in Russian)

[5] Zakharova I. V., “On the solvability of the external Stokes problem”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 1, 75–92 (in Russian)

[6] Zakharova I. V., “On a class of functions for compatibility condition”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 2, 81–94 (in Russian)

[7] Nazarov S., Pileskas K., “On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimentional exterior domain”, Journal of Mathematics of Kyoto University, 40 (2000), 475–492 | MR | Zbl

[8] Borchers W., Pileskas K., “Existence, uniqueness and asymptotics of steady jets”, Archive for Rational Mechanics and Analysis, 120 (1992), 1–49 | DOI | MR | Zbl

[9] Gerasimov I. A., Mushailov B. R., Celestial Mechanics (General course), Moscow, 2007, 550 pp. (in Russian)