Keywords: slow gas flows, entropy balance equation, barometric formula.
@article{VTPMK_2016_3_a0,
author = {V. V. Grigoryeva and Yu. V. Sheretov},
title = {Simplified quasi-hydrodynamic model for slow flows of compressible viscous heat conducting gas},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--17},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a0/}
}
TY - JOUR AU - V. V. Grigoryeva AU - Yu. V. Sheretov TI - Simplified quasi-hydrodynamic model for slow flows of compressible viscous heat conducting gas JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2016 SP - 5 EP - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a0/ LA - ru ID - VTPMK_2016_3_a0 ER -
%0 Journal Article %A V. V. Grigoryeva %A Yu. V. Sheretov %T Simplified quasi-hydrodynamic model for slow flows of compressible viscous heat conducting gas %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2016 %P 5-17 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a0/ %G ru %F VTPMK_2016_3_a0
V. V. Grigoryeva; Yu. V. Sheretov. Simplified quasi-hydrodynamic model for slow flows of compressible viscous heat conducting gas. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2016), pp. 5-17. http://geodesic.mathdoc.fr/item/VTPMK_2016_3_a0/
[1] Loytsyansky L. G., Fluid and Gas Mechanics, “Nauka” Publ., Moscow, 1987, 840 pp. (in Russian) | MR
[2] Sheretov Yu. V., “Quasi–hydrodynamic equations as a model of viscous heat conducting medium flows”, Application of Functional Analysis in the Theory of Approximations, Tver State University, Tver, 1997, 127–155 (in Russian)
[3] Sheretov Yu. V., Mathematical Modeling of Fluid and Gas Flows on the Base of Quasi–hydrodynamic and Quasi–gas–dynamic Equations, Tver State University, Tver, 2000, 235 pp. (in Russian)
[4] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, “Regular and Chaotic Dynamics” Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)
[5] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)
[6] Grigoryeva V. V., Sheretov Yu. V., “On the exact solutions of full quasi–hydrodynamic equations for stationary flows”, Vestnik TvGU. Seriya: Prikladnaya matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 1(5), 93–101 (in Russian)
[7] Zlotnik A. A., “Parabolicity of a quasi–hydrodynamic system of equations and the stability of its small perturbations”, Mathematical Notes, 83:5–6 (2008), 610–623 | DOI | DOI | MR | Zbl
[8] Zlotnik A. A., Gavrilin V. A., “On the parabolicity criteria of quasi-hydrodynamic system in the case of real gas”, Herald of Moscow Power Engineering Institute, 2009, no. 6, 116–126 (in Russian)
[9] Elizarova T. G., Bulatov O. V., “Numerical simulation of gas flows on the basis of quasi–hydrodynamic equations”, Moscow University Physics Bulletin, 64:6 (2009), 589–593 | DOI | Zbl
[10] Zlotnik A. A., Gavrilin V. A., “On the discretization of one-dimensional quasi–hydrodynamic system of equations for real gas”, Herald of Moscow Power Engineering Institute, 2016, no. 1, 5–14 (in Russian) | MR
[11] Balashov V. A., Savenkov E. B., “Numerical study of a quasi–hydrodynamic system of equations for flow computation at small mach numbers”, Computational Mathematics and Mathematical Physics, 55:10 (2015), 1773–1782 (in Russian) | DOI | MR | Zbl
[12] Balashov V. A., Savenkov E. B., “Direct pore–scale flow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI | DOI
[13] Klimontovich Yu. L., “On the need for and the possibility of a unified description of kinetic and hydrodynamic processes”, Theoretical and Mathematical Physics, 92:2 (1992), 909–921 | DOI | MR | Zbl
[14] Brenner H., “Fluid mechanics revisited”, Physica A: Statistical Mechanics and its Applications, 370 (2006), 190–224 | DOI
[15] Brenner H., “Fluid mechanics in fluids at rest”, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86:1 (2012), 016307 | DOI | MR
[16] Sambasivam R., Extended Navier–Stokes Equations: Derivations and Applications to Fluid Flow Problems, PhD Thesis, Erlangen, 2013, 217 pp.