Account for incompressibility in the stress analysis near viscoelastic inclusion in a viscoelastic solid under finite strains
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 107-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximate analytical solution for a specific plane quasistatic problem of the theory of viscoelasticity is found. This is the problem of the stress-strain state in infinitely extended body with circular incompressible viscoelastic inclusion (area with other material parameters) when the stresses at infinity are fixed at finite strains. Materials of body and inclusion are considered incompressible. Solution uses perturbation technique, complex Kolosov-Muskhelishvili potentials and Laplace transform. Some calculated results are shown and estimation of nonlinear effects is given.
Keywords: plane problem, viscoelastic inclusion, analytical solution, complex potentials, computer algebra, finite strain, incompressible materials.
@article{VTPMK_2016_2_a6,
     author = {D. A. Shavyrin and K. M. Zingerman},
     title = {Account for incompressibility in the stress analysis near viscoelastic inclusion in a viscoelastic solid under finite strains},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {107--121},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a6/}
}
TY  - JOUR
AU  - D. A. Shavyrin
AU  - K. M. Zingerman
TI  - Account for incompressibility in the stress analysis near viscoelastic inclusion in a viscoelastic solid under finite strains
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 107
EP  - 121
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a6/
LA  - ru
ID  - VTPMK_2016_2_a6
ER  - 
%0 Journal Article
%A D. A. Shavyrin
%A K. M. Zingerman
%T Account for incompressibility in the stress analysis near viscoelastic inclusion in a viscoelastic solid under finite strains
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 107-121
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a6/
%G ru
%F VTPMK_2016_2_a6
D. A. Shavyrin; K. M. Zingerman. Account for incompressibility in the stress analysis near viscoelastic inclusion in a viscoelastic solid under finite strains. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 107-121. http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a6/

[1] Adamov A. A., Matveenko V. P., Trufanov N. A., Shardakov I. N., Methods of Applied Viscoelasticity, Ural division of RAS, Ekatirenburg, 2003, 411 pp. (in Russian)

[2] Gamlitskii Yu. A., “Nanomechanics phenomenon of amplification of filled elastomers”, Mechanics of Composite Materials and Structures, 20:2 (2014), 230–247 (in Russian)

[3] Il'yushin A. A., Pobedrya B. E., Fundamentals of Mathematical Theory of Thermoviscoelasticity, Nauka Publ., Moscow, 1970, 280 pp. (in Russian)

[4] Koltunov M. A., Maiboroda V. P., Zubchaninov V. G., Structural Analyzes of Products from Polymeric Materials, Mashinostroeniye Publ., Moscow, 1983, 239 pp. (in Russian)

[5] Kristensen R., Introduction to the Theory of Viscoelasticity, Mir Publ., Moscow, 1974, 338 pp. (in Russian)

[6] Kolosov G. V., On One Application of the Theory of Complex Variable Functions to Elasticity Problem on a Plane, Mattisen Publ., Juriyev, 1908, 187 pp. (in Russian)

[7] Levin V. A., Zingerman K. M., Exact and Approximate Analytical Solutions for Finite Deformations and their Imposition, Fizmatlit Publ., Moscow, 2016, 400 pp. (in Russian)

[8] Lur'e A. I., Nonlinear Theory of Elasticity, Nauka Publ., Moscow, 1980, 512 pp. (in Russian)

[9] Moshev V. V., Svistkov A. L., Garishin O. K., Evlampieva S. E., Rogovoi A. A., Kovrov V. N., Komar L. A., Golotina L. A., Kozhevnikova L. L., Structural Mechanisms of the Mechanical Properties of Granular Polymer Composites, Ural division of RAS, Ekatirenburg, 1997, 508 pp. (in Russian)

[10] Muskhelishvili N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Nauka Publ., Moscow, 1966, 709 pp. (in Russian)

[11] Svistkov A. L., “The structural-phenomenological modeling of the mechanical behavior of rubber”, Macromolecular Compounds, 50:5 (2008), 892–902 (in Russian)

[12] Shavyrin D. A., “The analytical solution of the plane problem of the quasi-static deformation of an infinitely extended viscoelastic body with a circular viscoelastic inclusion with the help of computer algebra”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2013, no. 1(28), 45–54 (in Russian)

[13] Levin V. A., Zingerman K. M., “A class of methods and algorithms for the analysis of successive origination of holes in a pre-stressed viscoelastic body. Finite strains”, Communications in Numerical Methods in Engineering, 24:12 (2008), 2240–2251 | DOI | MR | Zbl

[14] Levin V. A., Zingerman K. M., Vershinin A. V., Yakovlev M. Ya., “Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains”, Composite Structures, 131 (2015), 25–36 | DOI

[15] Treloar L. R. G., The Physics of Rubber Elasticity, Clarendon Press, Oxford, 1975, 310 pp.

[16] Zingerman K. M., Shavyrin D. A., “Approximate analytical solution for the problem of an inclusion in a viscoelastic solid under finite strains”, Mechanics of Time-Dependent Materials, 20:2 (2016), 139–153 | DOI

[17] Wollscheid D., Lion A., “The benefit of fractional derivatives in modelling the dynamics of filler-reinforced rubber under large strains: a comparison with the Maxwell-element approach”, Computational Mechanics, 53 (2014), 1015–1031 | DOI | MR | Zbl