On one class of functions for compatibility condition
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 81-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the stationary problem of a flow around a finite solid body of a stream of viscous non-Newtonian fluid. The problem is considered in the linearized formulation for the case where the fluid velocity goes to zero at infinity. Necessary and sufficient condition for the existence of solution of the problem is formulated. Class of functions in the right part of the equation of motion, which satisfy this condition, is described. Examples are provided.
Keywords: exterior Stokes problem, non-Newtonian fluids, compatibility condition.
@article{VTPMK_2016_2_a4,
     author = {I. V. Zakharova},
     title = {On one class of functions for compatibility condition},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {81--94},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a4/}
}
TY  - JOUR
AU  - I. V. Zakharova
TI  - On one class of functions for compatibility condition
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 81
EP  - 94
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a4/
LA  - ru
ID  - VTPMK_2016_2_a4
ER  - 
%0 Journal Article
%A I. V. Zakharova
%T On one class of functions for compatibility condition
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 81-94
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a4/
%G ru
%F VTPMK_2016_2_a4
I. V. Zakharova. On one class of functions for compatibility condition. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 81-94. http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a4/

[1] Finn R., “On the exterior srationary problem for the Navier-Stokes equations, and associated perturbation problem”, Archive for Rational Mechanics and Analysis, 19 (1965), 363–406 | DOI | MR | Zbl

[2] Mogilevski I., Zakharova I., “The stationary flows for a certain type of nonnewtonian fluids”, Far East Journal of Applied Mathematics, 15:2 (2004), 259–277 | MR | Zbl

[3] Zakharova I. V., “Uniqueness of the solution of the problem of flow past a finite body by steady flow of non-Newtonian fluid”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 7, 61–88 (in Russian)

[4] Zakharova I. V., Mathematical models of unlimited steady flow of non-Newtonian fluids, PhD thesis, Tver, 2003, 118 pp. (in Russian)

[5] Zakharova I. V., “On the solvability of the external Stokes problem”, Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2016, no. 1, 75–92 (in Russian)

[6] Nazarov S., Pileskas K., “On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimentional exterior domain”, Journal of Mathematics of Kyoto University, 40 (2000), 475–492 | MR | Zbl

[7] Borchers W., Pileskas K., “Existence, uniqueness and asymptotics of steady jets”, Archive for Rational Mechanics and Analysis, 120 (1992), 1–49 | DOI | MR | Zbl