Analysis of the steady-state behavior of a queueing system with autoregressive arrivals
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 39-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies a single server queueing system with infinite capacity and with batch Poisson arrival process. A feature of the system under study is autoregressive dependence of the arriving batch sizes: the size of the $n$-th batch is equal to the size of the $(n-1)$-st batch with a fixed probability, and is an independent random variable with complementary probability. Service times are supposed to be independent random variables with a specified distribution. The steady-state behaviour is studied; expression for the probability generating function of the queue length is derived, as well as the mean queue length for a special case.
Keywords:
queueing theory, steady-state behaviour, batch arrivals.
@article{VTPMK_2016_2_a2,
author = {N. D. Leontyev},
title = {Analysis of the steady-state behavior of a queueing system with autoregressive arrivals},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {39--48},
publisher = {mathdoc},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a2/}
}
TY - JOUR AU - N. D. Leontyev TI - Analysis of the steady-state behavior of a queueing system with autoregressive arrivals JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2016 SP - 39 EP - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a2/ LA - ru ID - VTPMK_2016_2_a2 ER -
%0 Journal Article %A N. D. Leontyev %T Analysis of the steady-state behavior of a queueing system with autoregressive arrivals %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2016 %P 39-48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a2/ %G ru %F VTPMK_2016_2_a2
N. D. Leontyev. Analysis of the steady-state behavior of a queueing system with autoregressive arrivals. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 39-48. http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a2/