Properties of Kolmogorov-Smirnov statistics
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 31-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Kolmogorov-Smirnov statistic is considered with small sample size. An unimproved estimate for the distribution of the statistic of sample volumes $n=2$ and $n=3$ is proved.
Keywords: Kolmogorov-Smirnov statistics.
@article{VTPMK_2016_2_a1,
     author = {I. A. Tashkov},
     title = {Properties of {Kolmogorov-Smirnov} statistics},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {31--38},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a1/}
}
TY  - JOUR
AU  - I. A. Tashkov
TI  - Properties of Kolmogorov-Smirnov statistics
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 31
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a1/
LA  - ru
ID  - VTPMK_2016_2_a1
ER  - 
%0 Journal Article
%A I. A. Tashkov
%T Properties of Kolmogorov-Smirnov statistics
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 31-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a1/
%G ru
%F VTPMK_2016_2_a1
I. A. Tashkov. Properties of Kolmogorov-Smirnov statistics. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2016), pp. 31-38. http://geodesic.mathdoc.fr/item/VTPMK_2016_2_a1/