On the exact solutions of full quasi-hydrodynamic equations for stationary flows
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any infinitely differentiable solution of the stationary Euler system is the solution of corresponding quasi-hydrodynamic system if and only if it satisfies to stationary Navier-Stokes system. An example of the exact solution, which is common for three these systems and describes an isothermal vortex in gas, is given.
Mots-clés : full quasi-hydrodynamic equations, exact solutions.
Keywords: Euler and Navier-Stokes systems
@article{VTPMK_2016_1_a6,
     author = {V. V. Grigoryeva and Yu. V. Sheretov},
     title = {On the exact solutions of full quasi-hydrodynamic equations for stationary flows},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {93--101},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/}
}
TY  - JOUR
AU  - V. V. Grigoryeva
AU  - Yu. V. Sheretov
TI  - On the exact solutions of full quasi-hydrodynamic equations for stationary flows
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 93
EP  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/
LA  - ru
ID  - VTPMK_2016_1_a6
ER  - 
%0 Journal Article
%A V. V. Grigoryeva
%A Yu. V. Sheretov
%T On the exact solutions of full quasi-hydrodynamic equations for stationary flows
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 93-101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/
%G ru
%F VTPMK_2016_1_a6
V. V. Grigoryeva; Yu. V. Sheretov. On the exact solutions of full quasi-hydrodynamic equations for stationary flows. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101. http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/