On the exact solutions of full quasi-hydrodynamic equations for stationary flows
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that any infinitely differentiable solution of the stationary Euler system is the solution of corresponding quasi-hydrodynamic system if and only if it satisfies to stationary Navier-Stokes system. An example of the exact solution, which is common for three these systems and describes an isothermal vortex in gas, is given.
Mots-clés : full quasi-hydrodynamic equations, exact solutions.
Keywords: Euler and Navier-Stokes systems
@article{VTPMK_2016_1_a6,
     author = {V. V. Grigoryeva and Yu. V. Sheretov},
     title = {On the exact solutions of full quasi-hydrodynamic equations for stationary flows},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {93--101},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/}
}
TY  - JOUR
AU  - V. V. Grigoryeva
AU  - Yu. V. Sheretov
TI  - On the exact solutions of full quasi-hydrodynamic equations for stationary flows
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 93
EP  - 101
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/
LA  - ru
ID  - VTPMK_2016_1_a6
ER  - 
%0 Journal Article
%A V. V. Grigoryeva
%A Yu. V. Sheretov
%T On the exact solutions of full quasi-hydrodynamic equations for stationary flows
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 93-101
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/
%G ru
%F VTPMK_2016_1_a6
V. V. Grigoryeva; Yu. V. Sheretov. On the exact solutions of full quasi-hydrodynamic equations for stationary flows. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101. http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/

[1] Loytsyansky L. G., Fluid and Gas Mechanics, “Nauka” Publ., Moscow, 1987, 840 pp. (in Russian) | MR

[2] Sheretov Yu. V., “Quasi–hydrodynamic equations as a model of viscous heat conducting medium flows”, Application of Functional Analysis in the Theory of Approximations, Tver State University, Tver, 1997, 127–155 (in Russian)

[3] Sheretov Yu. V., Mathematical Modeling of Fluid and Gas Flows on the Base of Quasi–hydrodynamic and Quasi–gas–dynamic Equations, Tver State University, Tver, 2000, 235 pp. (in Russian)

[4] Sheretov Yu. V., Dynamics of Continuous Media Under Spatiotemporal Averaging, “Regular and Chaotic Dynamics” Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)

[5] Sheretov Yu. V., Regularized Hydrodynamic Equations, Tver State University, Tver, 2016, 222 pp. (in Russian)

[6] Zlotnik A. A., “Parabolicity of a quasihydrodynamic system of equations and the stability of its small perturbations”, Mathematical Notes, 83:5 (2008), 667–682 (in Russian) | DOI | MR | Zbl

[7] Balashov V. A., Savenkov E. B., “Phenomenological derivation of quasihydrodynamic equations with bulk viscosity”, Keldysh Institute preprints, 2015, 068, 25 pp. (in Russian) | MR

[8] Balashov V. A., Savenkov E. B., “Application of quasihydrodynamic equation for direct numerical simulation of flow in core samples”, Keldysh Institute preprints, 2015, 084, 20 pp. (in Russian) | MR

[9] Zlotnik A. A., Gavrilin V. A., “On the discretization of one-dimensional quasi–hydrodynamic system of equations for real gas”, Vestnik Moskovskogo Energeticheskogo Instituta [Herald of Moscow Power Engineering Institute], 2016, no. 1, 1–16 (in Russian)