On the exact solutions of full quasi-hydrodynamic equations for stationary flows
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that any infinitely differentiable solution of the stationary Euler system is the solution of corresponding quasi-hydrodynamic system if and only if it satisfies to stationary Navier-Stokes system. An example of the exact solution, which is common for three these systems and describes an isothermal vortex in gas, is given.
Mots-clés :
full quasi-hydrodynamic equations, exact solutions.
Keywords: Euler and Navier-Stokes systems
Keywords: Euler and Navier-Stokes systems
@article{VTPMK_2016_1_a6,
author = {V. V. Grigoryeva and Yu. V. Sheretov},
title = {On the exact solutions of full quasi-hydrodynamic equations for stationary flows},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {93--101},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/}
}
TY - JOUR AU - V. V. Grigoryeva AU - Yu. V. Sheretov TI - On the exact solutions of full quasi-hydrodynamic equations for stationary flows JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2016 SP - 93 EP - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/ LA - ru ID - VTPMK_2016_1_a6 ER -
%0 Journal Article %A V. V. Grigoryeva %A Yu. V. Sheretov %T On the exact solutions of full quasi-hydrodynamic equations for stationary flows %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2016 %P 93-101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/ %G ru %F VTPMK_2016_1_a6
V. V. Grigoryeva; Yu. V. Sheretov. On the exact solutions of full quasi-hydrodynamic equations for stationary flows. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 93-101. http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a6/