On a refinement of method for solving possibilistic optimization problems of one class with mutually Tw-related parameters
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 13-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We refine results that were obtained in [1-3]. In the mentioned papers an indirect method of solving the possibilistic optimization problem with fuzzy parameters of $\mathrm{(L,R)}$-type based on model of maximizing the level of fuzzy goal achievement in the context of weakest $t$-norm was constructed. In these works during the process of finding the distribution function of weighted sums involved in the construction of criteria and constraints it was assumed that the parameters of the optimization problem were mutually $T_W$-related. However later task's model space was being replaced while assuming that weighted sums and free terms are min-related. In this paper the above mentioned possibilistic optimization problem is investigated fully in the context of the weakest $t$-norm. A numerical example shows a comparative analysis of solving the optimization problem in 4 different cases: in "crisp" context, in mutaully min-related context, mutually $T_W$-related context and the dual $T_W$-$T_M$ context, based on the replacement of model set in the course of solving the problem.
Keywords: possibilistic optimization, aggregation of fuzzy information, the weakest triangular norm, indirect method.
Mots-clés : $t$-norm, $\mathrm{(L,R)}$-type distributions
@article{VTPMK_2016_1_a1,
     author = {I. S. Soldatenko},
     title = {On a refinement of method for solving possibilistic optimization problems of one class with mutually {Tw-related} parameters},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {13--32},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a1/}
}
TY  - JOUR
AU  - I. S. Soldatenko
TI  - On a refinement of method for solving possibilistic optimization problems of one class with mutually Tw-related parameters
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 13
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a1/
LA  - ru
ID  - VTPMK_2016_1_a1
ER  - 
%0 Journal Article
%A I. S. Soldatenko
%T On a refinement of method for solving possibilistic optimization problems of one class with mutually Tw-related parameters
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 13-32
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a1/
%G ru
%F VTPMK_2016_1_a1
I. S. Soldatenko. On a refinement of method for solving possibilistic optimization problems of one class with mutually Tw-related parameters. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 13-32. http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a1/

[1] Soldatenko I. S., Yazenin A. V., “Possibilistic optimization problems with mutually T-related parameters: Comparative study”, Journal of Computer and Systems Sciences International, 47:5 (2008), 752–763 | DOI | MR | Zbl

[2] Yazenin A., Soldatenko I., “Possibilistic optimization tasks with mutually T-related parameters: solution methods and comparative analysis”, Fuzzy Optimization: Recent Advances and Applications, Studies in Fuzziness and Soft Computing, 254, eds. W. A. Lodwick, J. Kacprzyk, Springer, Berlin–Heidelberg, 2010, 163–192 | DOI | MR | Zbl

[3] Soldatenko I. S., Yazenin A. V., “Possibilistic optimization problems with mutually t-related parameters”, Proceedings of 2008 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008 (New York City, USA, May 19-22, 2008), 1–5 | DOI

[4] Bellman R. E., Zadeh L. A., “Decision making in a fuzzy environment”, Management Science, 17 (1970), 141–162 | DOI | MR

[5] Luhandjula M. K., “On possibilistic linear programming”, Fuzzy Sets and Systems, 18 (1986), 15–30 | DOI | MR | Zbl

[6] Luhandjula M. K., “Fuzzy optimization: an appraisal”, Fuzzy Sets and Systems, 30 (1989), 257–282 | DOI | MR | Zbl

[7] Yazenin A. V., “On the problem of possibilistic optimization”, Fuzzy Sets and Systems, 81 (1996), 133–140 | DOI | MR | Zbl

[8] Yazenin A. V., Wagenknecht M., Possibilistic optimization, Brandenburgische Technische Universitat, Cottbus, Germany, 1996

[9] Rao M. B., Rashed A., “Some comments on fuzzy variables”, Fuzzy Sets and Systems, 6 (1996), 285–292 | DOI | MR

[10] Soldatenko I. S., “On a weighted sum of mutually Tw-related fuzzy values”, Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2007, no. 4, 63–77 (in Russian)

[11] Dyubua D., Prad A., Theory of Possibilities, “Radio i svyaz” Publ., Moscow, 1990 (in Russian) | MR

[12] Nguyen H. T., Walker E. A., A first cours in fuzzy logic, CRC Press, 1997 | MR

[13] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1 (1978), 97–110 | DOI | MR | Zbl

[14] Dubois D., Prade H., “Fuzzy numbers: an overview”, Analysis of Fuzzy Information, v. 2, eds. J. Bezdek, CRC-Press, Boca Raton, 1988, 3–39 | MR

[15] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980 | MR | Zbl

[16] Schweizer B., Sklar A., Probabilistic metric spaces, North Holland, New York, 1983 | MR | Zbl

[17] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper I: basic analytical and algebraic properties”, Fuzzy Sets and Systems, 143:1 (2004), 5–26 | DOI | MR | Zbl

[18] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper II: general constructions and parameterized families”, Fuzzy Sets and Systems, 145:3 (2004), 411–438 | DOI | MR | Zbl

[19] Klement E. P., Mesiar R., Pap E., “Triangular norms. Position paper III: continuous t-norms”, Fuzzy Sets and Systems, 145:3 (2004), 439–454 | DOI | MR | Zbl

[20] Mesiar R., “A note to the $T$-sum of $L-R$ fuzzy numbers”, Fuzzy Sets and Systems, 79 (1996), 259–261 | DOI | MR | Zbl

[21] Klement E. P., Mesiar R., Pap E., “A characterization of the ordering of continous $t$-norms”, Fuzzy Sets and Systems, 86 (1997), 189–195 | DOI | MR | Zbl

[22] Markov$\rm\acute a$-Stup$\rm\breve n$anov$\rm\acute a$ A., “A note to the addition of fuzzy numbers based on a continous Archimedean $T$-norm”, Fuzzy Sets and Systems, 91 (1997), 253–258 | DOI | MR | Zbl

[23] Mesiar R., “Computation of $L-R$-fuzzy numbers”, Proc. of 5th International Workshop on Current Issues in Fuzzy Technologies (Trento, Italy, 1995), 165–176

[24] Mesiar R., “Triangular-norm-based addition of fuzzy intervals”, Fuzzy Sets and Systems, 91 (1997), 231–237 | DOI | MR | Zbl

[25] Mesiar R., “Shape preserving additions of fuzzy intervals”, Fuzzy Sets and Systems, 86 (1997), 73–78 | DOI | MR | Zbl

[26] Yazenin A.V., “Fuzzy and Stochastic Programming”, Fuzzy Sets and Systems, 22 (1987), 171–180 | DOI | MR | Zbl

[27] Soldatenko I. S., “On genetic algorithm for solving possibilistic optimization problem with mutually Tw-related parameters”, Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2008, no. 8, 25–36 (in Russian)

[28] Gordeev R. N., Yazenin A. V., “A method for solving a problem of possibilistic programming”, Journal of Computer and Systems Sciences International, 45:3 (2006), 442–449 | DOI | MR | Zbl