Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the method of estimating the signal function from the noised observations based on the minimization of the probabilities of errors in calculating the wavelet coefficients. In the model with additive Gaussian noise we find the optimal parameters and estimate the risk rate.
Keywords: wavelets, thresholding, risk.
@article{VTPMK_2016_1_a0,
     author = {A. A. Kudriavtsev and O. V. Shestakov},
     title = {Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--12},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a0/}
}
TY  - JOUR
AU  - A. A. Kudriavtsev
AU  - O. V. Shestakov
TI  - Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2016
SP  - 5
EP  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a0/
LA  - ru
ID  - VTPMK_2016_1_a0
ER  - 
%0 Journal Article
%A A. A. Kudriavtsev
%A O. V. Shestakov
%T Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2016
%P 5-12
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a0/
%G ru
%F VTPMK_2016_1_a0
A. A. Kudriavtsev; O. V. Shestakov. Estimation of the optimal rate of the wavelet thresholding risk based on the error probabilities. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2016), pp. 5-12. http://geodesic.mathdoc.fr/item/VTPMK_2016_1_a0/

[1] Donoho D., Johnstone I., “Adapting to unknown smoothness via wavelet shrinkage”, Journal of the American Statistical Association, 90 (1995), 1200–1224 | DOI | MR | Zbl

[2] Donoho D., Johnstone I. M., “Minimax estimation via wavelet shrinkage”, Annals of Statistics, 26:3 (1998), 879–921 | DOI | MR | Zbl

[3] Jansen M., Noise Reduction by Wavelet Thresholding, Springer, New York, 2001 | DOI | MR | Zbl

[4] Marron J. S., Adak S., Johnstone I. M., Neumann M. H., Patil P., “Exact risk analysis of wavelet regression”, Journal of Computational and Graphical Statistics, 7 (1998), 278–309

[5] Markin A. V., Shestakov O. V., “Consistency of risk estimation with thresholding of wavelet coefficients”, Moscow University Computational Mathematics and Cybernetics, 34:1 (2010), 22–30 | DOI | MR | Zbl

[6] Shestakov O. V., “Asymptotic normality of adaptive wavelet thresholding risk estimation”, Doklady Mathematics, 86:1 (2012), 556–558 | DOI | MR | Zbl

[7] Sadasivan J., Mukherjee S., Seelamantula C. S., “An optimum shrinkage estimator based on minimum-probability-of-error criterion and application to signal denoising”, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2014 (Florence, Italy, May 4-9), 2014, 4249–4253 | DOI

[8] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, NY, 1999, 857 pp. | MR | Zbl