Uniqueness of classical solution for linearized quasi-hydrodynamic equations in barotropic approximation
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 137-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For linearized quasi-hydrodynamic equations in barotropic approximation the theorem on the uniqueness of classical solution of posed initial boundary value problem is proved. Asymptotic stability of equilibrium solution is established. The symmetric form of linearized system in Riemann invariants for one-dimensional non-stationary flows is written out.
Keywords: linearized quasi-hydrodynamic equations, barotropic approximation, uniqueness of classical solution, asymptotic stability of equilibrium solution
Mots-clés : Riemann invariants.
@article{VTPMK_2015_1_a8,
     author = {Yu. V. Sheretov},
     title = {Uniqueness of classical solution for linearized quasi-hydrodynamic equations in barotropic approximation},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {137--148},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a8/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - Uniqueness of classical solution for linearized quasi-hydrodynamic equations in barotropic approximation
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2015
SP  - 137
EP  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a8/
LA  - ru
ID  - VTPMK_2015_1_a8
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T Uniqueness of classical solution for linearized quasi-hydrodynamic equations in barotropic approximation
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2015
%P 137-148
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a8/
%G ru
%F VTPMK_2015_1_a8
Yu. V. Sheretov. Uniqueness of classical solution for linearized quasi-hydrodynamic equations in barotropic approximation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 137-148. http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a8/

[1] Sheretov Yu. V., “Kvazigidrodinamicheskie uravneniya kak model techenii szhimaemoi vyazkoi teploprovodnoi sredy”, Primenenie funktsionalnogo analiza v teorii priblizhenii, 1997, 127-155

[2] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2009, 400 pp.

[3] Zlotnik A. A., “O parabolichnosti kvazigidrodinamicheskoi sistemy uravnenii i ustoichivosti malykh vozmuschenii dlya nee”, Matematicheskie zametki, 83:5 (2008), 667-682 | DOI | MR | Zbl

[4] Zlotnik A. A., “Energeticheskie ravenstva i otsenki dlya barotropnykh kvazigazo- i kvazigidrodinamicheskikh sistem uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:2 (2010), 325-337 | MR | Zbl

[5] Sheretov Yu. V., “O svoistvakh reshenii kvazigidrodinamicheskikh uravnenii v barotropnom priblizhenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2009, no. 14, 5-19

[6] Sheretov Yu. V., “Edinstvennost klassicheskogo resheniya osnovnoi nachalno-kraevoi zadachi dlya kvazigidrodinamicheskikh uravnenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2011, no. 20, 7-20

[7] Sheretov Yu. V., “Metody postroeniya tochnykh reshenii kvazigidrodinamicheskikh uravnenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2011, no. 21, 5-26

[8] Sheretov Yu. V., “Edinstvennost resheniya kvazigidrodinamicheskikh uravnenii v priblizhenii melkoi vody”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2011, no. 22, 7-28

[9] Sheretov Yu. V., “O edinstvennosti klassicheskogo resheniya linearizovannykh kvazigidrodinamicheskikh uravnenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2014, no. 2, 33-45

[10] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 589 pp. | MR

[11] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR