Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 127-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Reduction of nonlinear partial differential equations to a loaded equation is made for finding their approximate solutions. We obtain formulas for the general term of the sequence of approximate solutions of the initial-boundary value problems for some loaded equations, for which the original nonlinear equations are reduced.
Keywords: loaded partial differential equations, differential equations with power nonlinearity, approximate solutions.
@article{VTPMK_2015_1_a7,
     author = {O. L. Boziev},
     title = {Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {127--136},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a7/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2015
SP  - 127
EP  - 136
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a7/
LA  - ru
ID  - VTPMK_2015_1_a7
ER  - 
%0 Journal Article
%A O. L. Boziev
%T Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2015
%P 127-136
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a7/
%G ru
%F VTPMK_2015_1_a7
O. L. Boziev. Application of loaded equations to approximate solutions of partial differential equations with the power nonlinearity. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 127-136. http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a7/

[1] Dzhenaliev M. T., “Optimalnoe upravlenie lineinymi nagruzhennymi parabolicheskimi uravneniyami”, Differentsialnye uravneniya, 25:4 (1989), 641-651 | MR | Zbl

[2] Laptev G. I., “Kvazilineinye parabolicheskie uravneniya vtorogo poryadka s integralnymi koeffitsientami”, Doklady Akademii nauk SSSR, 293:2 (1987), 306-309 | MR | Zbl

[3] Lions Zh. -L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 736 pp. | MR

[4] Bernshtein S. N., Ob odnom klasse funktsionalnykh uravnenii, sobranie sochinenii, v. 3, Izd-vo Akad. Nauk SSSR, M., 1960 | MR

[5] Pokhozhaev S. I., “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differentsialnye uravneniya, 21:1 (1985), 101-109 | MR

[6] Arosio A., Panizzi S., “On the well-posedness of Kirchhoff string”, Transactions of the American Mathematical Society, 348:1 (1996), 305-330 | DOI | MR | Zbl

[7] Medeiros L. A., “On the weak solutions of nonlinear partial differential equations”, Anais da Academia Brasileira de Ciencias, 53:1 (1981), 13-15 | MR | Zbl

[8] Medeiros L. A., Miranda M., “Local solutions for a non linear unilateral problem”, Revue Roumaine de Mathematique Pures et Appliquees, 31:5 (1986), 371-382 | MR | Zbl

[9] Lions Zh. -L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[10] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[11] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp.

[12] Poloskov I. E., “Analiz povedeniya raspredelennykh sistem, opisyvaemykh stokhasticheskimi uravneniyami tipa KPP”, Vestnik Permskogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 2009, no. 7, 61-65