@article{VTPMK_2015_1_a5,
author = {A. A. Eroshenko},
title = {Consistency of risk estimates for wavelet-vaguelette and vaguelette-wavelet decompositions of signal function in the model of data with correlated noise},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {103--114},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a5/}
}
TY - JOUR AU - A. A. Eroshenko TI - Consistency of risk estimates for wavelet-vaguelette and vaguelette-wavelet decompositions of signal function in the model of data with correlated noise JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2015 SP - 103 EP - 114 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a5/ LA - ru ID - VTPMK_2015_1_a5 ER -
%0 Journal Article %A A. A. Eroshenko %T Consistency of risk estimates for wavelet-vaguelette and vaguelette-wavelet decompositions of signal function in the model of data with correlated noise %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2015 %P 103-114 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a5/ %G ru %F VTPMK_2015_1_a5
A. A. Eroshenko. Consistency of risk estimates for wavelet-vaguelette and vaguelette-wavelet decompositions of signal function in the model of data with correlated noise. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 103-114. http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a5/
[1] Donoho D., Johnstone I. M., “Adapting to unknown smoothness via wavelet shrinkage”, Journal of the American Statistical Association, 90 (1995), 1200-1224 | DOI | MR | Zbl
[2] Dobeshi I., Desyat lektsii po veivletam, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001, 464 pp.
[3] Donoho D., Johnstone I. M., “Ideal spatial adaptation via wavelet shrinkage”, Biometrika, 81:3 (1994), 425-455 | DOI | MR | Zbl
[4] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Wavelet shrinkage: asymptopia?”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 57:2 (1995), 301-369 | MR | Zbl
[5] Marron J. S., Adak S., Johnstone I. M., Neumann M. H., Patil P., “Exact risk analysis of wavelet regression”, Journal of Computational and Graphical Statistics, 7 (1998), 278-309
[6] Antoniadis A., Fan J., “Regularization of wavelet approximations”, Journal of the American Statistical Association, 96:455 (2001), 939-967 | DOI | MR | Zbl
[7] Markin A. V., “Predelnoe raspredelenie otsenki riska pri porogovoi obrabotke veivlet-koeffitsientov”, Informatika i ee primeneniya, 3:4 (2009), 57-63
[8] Markin A. V., Shestakov O. V., “O sostoyatelnosti otsenki riska pri porogovoi obrabotke veivlet-koeffitsientov”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2010, no. 1, 26-34 | Zbl
[9] Shestakov O. V., “Approksimatsiya raspredeleniya otsenki riska porogovoi obrabotki veivlet-koeffitsientov normalnym raspredeleniem pri ispolzovanii vyborochnoi dispersii”, Informatika i ee primeneniya, 4:4 (2010), 72-79
[10] Shestakov O. V., “O tochnosti priblizheniya raspredeleniya otsenki riska porogovoi obrabotki veivlet-koeffitsientov signala normalnym zakonom pri neizvestnom urovne shuma”, Sistemy i sredstva informatiki, 22:1 (2012), 142-152
[11] Shestakov O. V., “Asimptoticheskaya normalnost otsenki riska porogovoi obrabotki veivlet-koeffitsientov pri vybore adaptivnogo poroga”, Doklady RAN, 445:5 (2012), 513-515 | Zbl
[12] Shestakov O. V., “Zavisimost predelnogo raspredeleniya otsenki riska porogovoi obrabotki veivlet-koeffitsientov signala ot vida otsenki dispersii shuma pri vybore adaptivnogo poroga”, T-Comm: Telekommunikatsii i transport, 6:1 (2012), 46-51
[13] Shestakov O. V., “Tsentralnaya predelnaya teorema dlya funktsii obobschennoi kross-validatsii pri porogovoi obrabotke veivlet-koeffitsientov”, Informatika i ee primeneniya, 7:2 (2013), 40-49
[14] Eroshenko A. A., Shestakov O. V., “Asimptoticheskie svoistva otsenki riska pri porogovoi obrabotke veivlet-koeffitsientov v modeli s korrelirovannym shumom”, Informatika i ee primeneniya, 8:1 (2014), 36-44
[15] Eroshenko A. A., Shestakov O. V., “Asimptoticheskaya normalnost otsenki riska pri veivlet-veiglet-razlozhenii funktsii signala v modeli s korrelirovannym shumom”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2014, no. 3, 23-30 | MR | Zbl
[16] Eroshenko A. A., Kudryavtsev A. A., Shestakov O. V., “Predelnoe raspredelenie otsenki riska metoda veiglet-veivlet-razlozheniya signala v modeli s korrelirovannym shumom”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2015, no. 1, 12-18 | MR | Zbl
[17] Donoho D., “Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition”, Applied and Computational Harmonic Analysis, 2 (1995), 101-126 | DOI | MR | Zbl
[18] Abramovich F., Silverman B. W., “Wavelet decomposition approaches to statistical inverse problems”, Biometrika, 85:1 (1998), 115-129 | DOI | MR | Zbl
[19] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, 1999 | MR | Zbl
[20] Boggess A., Narkowich F., A First Course in Wavelets with Fourier Analysis, Prentice Hall, 2001 | MR | Zbl
[21] Taqqu M. S., “Weak convergence to fractional brownian motion and to the rosenblatt process”, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 31 (1975), 287-302 | DOI | MR | Zbl
[22] Johnstone I. M., Silverman B. W., “Wavelet threshold estimates for data with correlated noise”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59 (1997), 319-351 | DOI | MR | Zbl
[23] Johnstone I. M., “Wavelet shrinkage for correlated data and inverse problems: adaptivity results”, Statistica Sinica, 9:1 (1999), 51-83 | MR | Zbl
[24] Lee N., Wavelet-vaguelette decompositions and homogenous equations, PhD dissertation, Purdue University, 1997 | MR