On infinite source Poisson model with heterogeneous sources
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 47-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerous traffic measurements in modern telecommunication systems highlighted two fundamentally new properties inherent in such systems: long-term dependence and self-similarity, which cannot be captured in a parsimonious way by traditional Markovian models. Strong irregularity and variability of packet traffic coupled with the presence of long-term dependence have a deep impact on the network performance. Markovian theory in this case lead to a substantial underestimation of the network load and highly non-accurate estimation of different performance measures. Hence, the development of an adequate traffic models and investigation their properties, is an important task of network engineering. Of particular interest is to study non homogenous traffic and its influence on system performance. In this paper we consider the Poisson model with infinite number of heterogenous sources and specify conditions under which the source of any type can affect the performance of telecommunication system.
Keywords: long and short-range dependency, heavy-tailed distributions, $\alpha$-stable Levy motion.
Mots-clés : infinite source Poisson model
@article{VTPMK_2015_1_a2,
     author = {O. I. Sidorova},
     title = {On infinite source {Poisson} model with heterogeneous sources},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {47--66},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a2/}
}
TY  - JOUR
AU  - O. I. Sidorova
TI  - On infinite source Poisson model with heterogeneous sources
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2015
SP  - 47
EP  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a2/
LA  - ru
ID  - VTPMK_2015_1_a2
ER  - 
%0 Journal Article
%A O. I. Sidorova
%T On infinite source Poisson model with heterogeneous sources
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2015
%P 47-66
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a2/
%G ru
%F VTPMK_2015_1_a2
O. I. Sidorova. On infinite source Poisson model with heterogeneous sources. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 47-66. http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a2/

[1] Sidorova O. I., “Verkhnyaya i nizhnyaya granitsy dlya veroyatnosti poteri paketa i veroyatnosti perepolneniya bufera v modeli s neodnorodnymi istochnikami”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2008, no. 11, 53-61

[2] Khokhlov Yu. S., Sidorova O. I., “Approksimatsiya veroyatnosti perepolneniya bufera dlya sluchaya razlichnykh raspredelenii dliny aktivnykh periodov”, Slozhnye sistemy: Obrabotka informatsii, modelirovanie i optimizatsiya, Sb. nauch. tr., v. 2, TvGU, Tver, 2004, 68-77

[3] D'Apice C., Gargiulo G., Sidorova O., Khokhlov Yu., “Convergence of superpositions of scaled renewal processes with finite number of different distributions”, Journal of Mathematical Sciences, 132:5 (2006), 602-609 | DOI | MR | Zbl

[4] Crovella M., Bestavros A., “Self-similarity in world wide web traffic: evidence and possible cases”, Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modelling of Computer Systems, 1996, 160-169 | DOI

[5] Crovella M., Kim G., Park K., “On the relationship between file sizes, transport protocols, and self-similar network traffic”, Proceedings of the Fourth International Conference on Network Protocols, ICNP’96, 1996, 171-180

[6] Feldmann A., Gilbert A. C., Willinger W., “Data networks as cascades: Investigating the multifractal nature of Internet WAN traffic”, Proceedings of ACM SIGCOMM T98, 1998, 42-55

[7] Leland W. E., Taqqu M. S., Willinger W., Willson D. V., “On the self-similar nature of Ethernet traffic (Extended version)”, IEEE/ACM Transactions on Networking, 2 (1994), 1-15 | DOI

[8] Mikosch Th., Resnick S., Rootzen H., Stegeman A., “Is network traffic approximated by stable Levy motion or fractional Brownian motion?”, Annals of Applied Probability, 12:1 (2002), 23-68 | DOI | MR | Zbl

[9] Resnick S. I., “Point processes, regular variation and weak convergence”, Advances in Applied Probability, 18 (1986), 66-138 | DOI | MR | Zbl

[10] Taqqu M. S., Willinger W., Sherman R., “Proof of a fundamental result in self-similar traffic modeling”, ACM SIGCOMM Computer Communication Review, 27:2 (1997), 5-23 | DOI

[11] Taqqu M. S., Teverovsky V., Willinger W., “Is network traffic self-similar or multifractal?”, Fractals, 5:1 (1997), 63-73 | DOI | MR | Zbl