Mots-clés : martingales
@article{VTPMK_2015_1_a1,
author = {S. Yu. Kashayeva},
title = {On the theory of backward stochastic differential equations and their applications},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {15--46},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a1/}
}
TY - JOUR AU - S. Yu. Kashayeva TI - On the theory of backward stochastic differential equations and their applications JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2015 SP - 15 EP - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a1/ LA - ru ID - VTPMK_2015_1_a1 ER -
%0 Journal Article %A S. Yu. Kashayeva %T On the theory of backward stochastic differential equations and their applications %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2015 %P 15-46 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a1/ %G ru %F VTPMK_2015_1_a1
S. Yu. Kashayeva. On the theory of backward stochastic differential equations and their applications. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2015), pp. 15-46. http://geodesic.mathdoc.fr/item/VTPMK_2015_1_a1/
[1] Antonelli F., “Backward-forward stochastic differential equations”, Annals of Applied Probability, 3 (1993), 777-793 | DOI | MR | Zbl
[2] Barles G., Buckdahn R., Pardoux E., “Backward stochastic differential equations and integral-partial differential equations”, Stochastics and Stochastics Reports, 60 (1997), 57-83 | DOI | MR | Zbl
[3] Bass R. F., “The Doob-Meyer decomposition revisited”, Canadian Mathematical Bulletin, 39 (1996), 138-150 | DOI | MR | Zbl
[4] Beiglböck M., Schachermayer W., Veliyev B., “A short proof of the Doob-Meyer theorem”, Stochastic Processes and their Applications, 122:4 (2012), 1202-1204 | DOI | MR
[5] Briand P., Hu Y., “BSDE with quadratic growth and unbounded terminal value”, Probability Theory and Related Fields, 136:4 (2006), 604-618 | DOI | MR | Zbl
[6] Burgstaller B., “A note on the Doob-Meyer decomposition of $L^p$-valued submartingales”, Bulletin of the Australian Mathematical Society, 69 (2004), 227-235 | DOI | MR | Zbl
[7] Chen Z., “A new proof of Doob-Meyer decomposition theorem”, Comptes Rendus de Academie des Sciences, Paris, Serie I Math, 328:10 (1999), 919-924 | MR | Zbl
[8] Chung K. L., Williams R. J., An introduction to stochastic integration, Second edition, Birkhäuser, Boston, 1990, 294 pp. | MR
[9] Doléans-Dade C., “Processus croissants naturels et processus croissants très bien mesurables”, Comptes Rendus de Academie des Sciences, Paris, Serie A-B, 264 (1967), 874-876 | MR | Zbl
[10] Duffie D., Epstein L. G., “Stochastic differential utility”, Econometrica, 60 (1992), 353-394 | DOI | MR | Zbl
[11] Duffie D., Epstein L. G., “Assert pricing with stochastic differential utilities”, Review of Financial Studies, 5:3 (1992), 411-436 | DOI | MR
[12] Dub Dzh., Veroyatnostnye protsessy, Mir, M., 1956, 608 pp.
[13] Ethier S. N., Kurtz T. G., Markov Processes: Characterization and Convergence, John Wiley Sons, New York, 1986, 551 pp. | MR | Zbl
[14] Hu Y., Peng S., “Adapted solution of a backward stochastic evolution equation”, Stochastic Analysis and Applications, 48 (1991), 445-459 | MR
[15] Hu Y., Peng S., “Solution of forward-backward stochastic differential evolution equations”, Probability Theory and Related Fields, 103 (1995), 273-283 | DOI | MR | Zbl
[16] Jakubowski A., “Towards a general Doob-Meyer decomposition theorem”, Probability and Mathematical Statistics, 26 (2006), 143-153 | MR | Zbl
[17] El Karoui N., Peng S. G., Quenez M. C., “Backward stochastic differential equations in finance”, Mathematical Finance, 7:1 (1997), 1-71 | DOI | MR | Zbl
[18] Kashayeva S. Yu., Kruglov V. M., “On a representation of submartingales and its application”, Lobachevskii Journal of Mathematics, 2014, no. 2, 74-84 | DOI | MR | Zbl
[19] Komlós A., “A generalization of a problem of Steinhaus”, Acta Mathematica Academiae Scientiarum Hungaricae, 18 (1967), 217-229 | DOI | MR | Zbl
[20] Koopmans T., “Stationary ordinary utility and impatience”, Econometrica, 28 (1960), 287-309 | DOI | MR | Zbl
[21] Kruglov V. M., Sluchainye protsessy, Akademiya, M., 2013, 336 pp.
[22] Lepeltier M., San Martin J., “Backward stochastic differential equations with non-Lipschitz coefficients”, Statistics Probability Letters, 32:4 (1997), 425-430 | DOI | MR | Zbl
[23] Ma J., Yong J., Forward-Backward Stochastic Differential Equations and their Applications, Lecture Notes in Mathematics, 1702, 2007, 274 pp. | DOI | MR
[24] Ma J., Yong J., “Adapted solution of a degenerate backward SPDE with applications”, Stochastic Processes and their Applications, 70 (1997), 59-84 | DOI | MR | Zbl
[25] Meyer P. -A., “A decomposition theorem for supermartingales”, Illinois Journal of Mathematics, 6 (1962), 193-205 | MR | Zbl
[26] Meyer P. -A., “Decomposition of supermartingales: the uniqueness theorem”, Illinois Journal of Mathematics, 7 (1963), 1-17 | MR | Zbl
[27] Pardoux E., “Backward stochastic differential equations and applications”, Proc. of the International Congress of Mathematics (Zurich, Switzerland, 1994), 1502-1510 | MR | Zbl
[28] Pardoux E., Peng S. G., “Adapted solution of a backwand stochastic differential equation”, Systems Control Letters, 14:1 (1990), 55-61 | DOI | MR | Zbl
[29] Protter P. E., “Stochastic integration and differential equations”, Stochastic Modelling and Applied Probability, 21 (2005), 407 pp. | DOI | MR
[30] Stepanov V. V., Kurs differentsialnykh uravnenii, GTTI, M.; Fizmatlit, M., 1959, 473 pp.
[31] Rao K. M., “On decomposition theorems of Meyer”, Mathematica Scandinavica, 24 (1969), 66-78 | DOI | MR | Zbl