Features of the coagulation and fragmentation of drops in turbulent gas–liquid jets
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 103-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the mass exchange between drops of various sizes resulting from their coagulation and fragmentation in a two-phase jet is studied. Drops are combined into classes, and the drops of the isolated classes are assumed to consist of pure substances (components) in the initial cross-section of the jet. When moving away from the nozzle due to interparticle interaction, other components appear in the drops of all classes. The study of the variation in the component composition of drops makes it possible to analyze the intensity of mass exchange between drops and the ratio between coagulation and fragmentation of drops. Calculations have shown that coagulation and fragmentation of the drops occur simultaneously in the jet, but coagulation prevails over fragmentation. At a short distance from the nozzle, a significant change is observed in the fraction of components in the drops, and further their component composition remains constant. As the concentration of drops increases, the ratio between components in the drops tends to the ratio between the volume concentrations of the drops from the isolated classes in the initial cross-section of the jet.
Keywords: two-phase jet, drops, gas, coagulation and fragmentation of drops, mathematical model, calculation results.
@article{VTGU_2024_90_a8,
     author = {Yu. V. Zuev},
     title = {Features of the coagulation and fragmentation of drops in turbulent gas{\textendash}liquid jets},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {103--118},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a8/}
}
TY  - JOUR
AU  - Yu. V. Zuev
TI  - Features of the coagulation and fragmentation of drops in turbulent gas–liquid jets
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 103
EP  - 118
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a8/
LA  - ru
ID  - VTGU_2024_90_a8
ER  - 
%0 Journal Article
%A Yu. V. Zuev
%T Features of the coagulation and fragmentation of drops in turbulent gas–liquid jets
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 103-118
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a8/
%G ru
%F VTGU_2024_90_a8
Yu. V. Zuev. Features of the coagulation and fragmentation of drops in turbulent gas–liquid jets. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 103-118. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a8/

[1] Arkhipov V.A., Matvienko O.V., Zharova I.K., Maslov E.A., Perfileva K.G., Bulavko A.M., “Modelirovanie dinamiki zhidko-kapelnogo khladagenta pri aviatsionnom tushenii pozharov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 62, 68–78

[2] Pakhomov M.A., Terekhov V.I., “Chislennoe issledovanie turbulentnoi struktury poli dispersnoi dvukhfaznoi strui s isparyayuschimisya kaplyami”, Matematicheskoe modelirovanie, 28:11 (2016), 64–78 | MR

[3] De S., Lakshmisha K.N., “Simulations of Evaporating Spray Jet in a Uniform Co-Flowing Turbulent Air Stream”, International Journal of Spray and Combustion Dynamics, 1:2 (2009), 169–198 | DOI

[4] Mostafa A.A., Mongia H.C., “On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach”, International Journal of Heat and Mass Transfer, 30:12 (1987), 2583–2593 | DOI

[5] Wang J., Dalla Barba F., Picano F., “Direct numerical simulation of an evaporation turbulent diluted jet-spray at moderate Reynolds number”, International Journal of Multiphase Flow, 137:5 (2021), 103567 | DOI | MR

[6] Elghobashi S., “Particle-laden turbulent flows: direct simulation and closure models”, Applied Scientific Research, 48:3-4 (1991), 301–314 | DOI | Zbl

[7] Zuev Yu.V., “Vliyanie koagulyatsii i drobleniya kapel na parametry gazokapelnoi turbulentnoi strui”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiziko-matematicheskie nauki, 164, no. 1, 2022, 85–100 | DOI

[8] Nigmatulin R.I., Dinamika mnogofaznykh sred, v 2 ch., v. 1, Nauka, M., 1987

[9] Khintse I.O., Turbulentnost, ee mekhanizm i teoriya, Fizmatgiz, M., 1963

[10] Sternin L.E., Shraiber A.A., Mnogofaznye techeniya gaza s chastitsami, Mashinostroenie, M., 1994

[11] Sternin L.E., Osnovy gazodinamiki dvukhfaznykh techenii v soplakh, Mashinostroenie, M., 1974

[12] Friedlander S.K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley Sons, New York, 1977

[13] Zuev Yu.V., Lepeshinskii I.A., Reshetnikov V.A., Istomin E.A., “Vybor kriteriev i opredelenie ikh znachenii dlya otsenki kharaktera vzaimodeistviya faz v dvukhfaznykh turbulentnykh struyakh”, Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2012, no. 1, 42–54

[14] Krasheninnikov S.Yu., “K raschetu osesimmetrichnykh zakruchennykh i nezakruchennykh turbulentnykh strui”, Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1972, no. 3, 71–80

[15] U. Frost, T. Moulden (red.), Turbulentnost. Printsipa: i primeneniya, Mir, M., 1980

[16] Shraiber A.A., Gavin L.B., Naumov V.A., Yatsenko V.P., Turbulentnye techeniya gazovzvesi, Naukova dumka, Kiev, 1987

[17] Mostafa A.A., Mongia I.N., McDonell V.G., Samuelsen G.S., “Evolution of Particle-laden Jet Flows: A Theoretical and Experimental Study”, AIAA Journal, 27:2 (1989), 167–183 | DOI