@article{VTGU_2024_90_a6,
author = {V. V. Glagolev and A. I. Lutkhov},
title = {On the determination of specific elastic energy flow to the vertex of a physical cut via a finite element solution},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {78--89},
year = {2024},
number = {90},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a6/}
}
TY - JOUR AU - V. V. Glagolev AU - A. I. Lutkhov TI - On the determination of specific elastic energy flow to the vertex of a physical cut via a finite element solution JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 78 EP - 89 IS - 90 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a6/ LA - ru ID - VTGU_2024_90_a6 ER -
%0 Journal Article %A V. V. Glagolev %A A. I. Lutkhov %T On the determination of specific elastic energy flow to the vertex of a physical cut via a finite element solution %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 78-89 %N 90 %U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a6/ %G ru %F VTGU_2024_90_a6
V. V. Glagolev; A. I. Lutkhov. On the determination of specific elastic energy flow to the vertex of a physical cut via a finite element solution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 78-89. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a6/
[1] Griffith A.A., “The phenomena of rupture and flow in solids”, Philosophical Transactions of the Royal Society of London. Ser. A, 221 (1921), 163–189 | DOI
[2] Cherepanov G.P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974, 640 pp.
[3] Murakami Yu., Spravochnik po koeffitsientam intensivnosti napryazhenii, Mir, M., 1990, 1014 pp.
[4] Malik A.V., Lavit I.M., “Metod rascheta koeffitsienta intensivnosti napryazhenii dlya nepodvizhnoi treschiny normalnogo razryva pri dinamicheskom nagruzhenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 54, 88–102 | Zbl
[5] Murakami Y., “A simple procedure for the accurate determination of stress intensity factors by finite element method”, Engineering Fracture Mechanics, 8:4 (1976), 643–655 | DOI
[6] Rybicki E.F., Kanninen M.F., “A finite element calculation of stress intensity factors by a modi fied crack closure integral”, Engineering Fracture Mechanics, 9:4 (1977), 931–938 | DOI
[7] Caicedo J., Portela A., “Direct computation of stress intensity factors in finite element method”, European Journal of Computational Mechanics, 26:3 (2017), 309–335 | DOI | MR
[8] Tanaka M., Hamada M., Iwata Y., “Computation of a two-dimensional stress intensity factor by the boundary element method”, Ingenieur-Archiv, 52 (1982), 95–104 | DOI | Zbl
[9] Cherepanov G.P., “Some new applications of the invariant integrals of mechanics”, Journal of Applied Mathematics and Mechanics, 76:5 (2012), 519–536 | DOI | MR
[10] Rice J.R., “A path independent integral and the approximate analysis of strain concentration by notches and cracks”, Journal of Applied Mechanics, 35:2 (1968), 379–386 | DOI
[11] Kolednik O., Schongrundner R., Fischer F.D., “A new view on J-integrals in elastic-plastic materials”, International Journal of Fracture, 187:1 (2014), 77–107 | DOI
[12] Huang K., Shimada T., Ozaki N., Hagiwara Y., Sumigawa T., Guo L., Kitamura T., “A unified and universal Griffith-based criterion for brittle fracture”, International Journal of Solids and Structures, 128 (2017), 67–72 | DOI
[13] Prandtl L., Knauss W.G., “A thought model for the fracture of brittle solids”, International Journal of Fracture, 171:2 (2011), 105–109 | DOI
[14] Entov V.M., Salganik R.L., “K modeli khrupkogo razrusheniya Prandtlya”, Izvestiya AN SSSR. Mekhanika tverdogo tela, 1968, no. 6, 87–99
[15] He X., “A review of finite element analysis of adhesively bonded joints”, International Journal of Adhesion and Adhesives, 31:4 (2011), 248–264 | DOI
[16] Novozhilov V.V., “O neobkhodimom i dostatochnom kriterii khrupkoi prochnosti”, Prikladnaya matematika i mekhanika, 33:2 (1969), 212–222
[17] Morozov N.F., Semenov B.N., “Primenenie kriteriya khrupkogo razrusheniya V.V. Novozhilova pri opredelenii razrushayuschikh nagruzok dlya uglovykh vyrezov v usloviyakh slozhnogo napryazhennogo sostoyaniya”, Izvestiya AN SSSR. Mekhanika tverdogo tela, 1986, no. 1, 122–126
[18] Neiber G., Kontsentratsiya napryazhenii, OGIZ: Gostekhizdat, M.–L., 1947, 204 pp.
[19] Neuber H., Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material, Springer-Verlag, Berlin, 1958, 180 pp.
[20] Nazarov S.A., Paukshto M.V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, Izd-vo Leningr. un-ta, L., 1984, 93 pp.
[21] Morozov E.M., ANSYS v rukakh inzhenera: mekhanika razrusheniya, Lenand, M., 2010, 456 pp.
[22] Burtsev A.Yu., Glagolev V.V., Markin A.A., “Issledovanie protsessa lokalnoi razgruzki elementa v konechno-elementnom kontinuume”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 69, 86–96
[23] Berto F., Glagolev V., “V, Markin A.A. Relationship between Jc and the dissipation energy in the adhesive layer of a layered composite”, International Journal of Fracture, 224 (2020), 277–284 | DOI
[24] Andrews M.G., Massabo R., “The effects of shear and near tip deformations on energy release rate and mode mixity of edgecracked orthotropic layers”, Engineering Fracture Mechanics, 74 (2007), 2700–2720 | DOI