Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 40-49

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the characteristic properties of direct products of semigroups with zero admitting outerplanar Cayley graphs, as well as their generalizations in the defining relations of copresentation. Theorem 1. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits an outerplanar Cayley graph if and only if one of the following conditions holds: 1) $S \cong \langle a\mid a^3 = a^2\rangle^0 \times\langle b \mid b^{h+1}=b^h\rangle^0$ where $h$ is a natural number and $h4$; 2) $S \cong\langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^ n \langle a_i \mid a_i^{2+1}= a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r\leqslant 2$; or $r = 3$, $n = 1$; 3) $S \cong \langle a\mid a^{r+m}=a^r\rangle^{+0}\times \langle b\mid b_2=b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m \leqslant 2$; 4) $S \cong \langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^n \langle a_i\mid a_i^2= a_i\rangle^{+0}$ where $n = 1$; or $r = 1$, $n = 2$. Theorem 2. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits a generalized outerplanar Cayley graph if and only if one of the following conditions holds: 1) $S \cong \langle a\mid a^{r+m}=a^r\rangle^0\times \langle b\mid b^{h+t}=b^h\rangle^0$ where for natural numbers $r, m, h, t$ one of the following restrictions is satisfied: 1.1) $r=2$, $m=1$, $h4$, $t=1$; 1.2) $r=3$, $m=1$, $h=3$, $t=1$; 2) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^{2+1}=a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r \leqslant 3$; 3.1) $S \cong\langle a\mid a^{2+1}= a^2\rangle \times \langle b\mid b^{2+1}= b^2\rangle^{+0}$; 3.2) $S \cong\langle a\mid a^{r+m}= a^r\rangle^{+0} \times \langle b \mid b^2= b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m\leqslant 2$; 4) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^2=a_i\rangle^{+0}$ where $n=1$; or $r=1$, $n=2$.
Keywords: right Cayley graphs of semigroups, planar graphs, semigroups with zero, direct products of semigroups, outerplanar graphs.
@article{VTGU_2024_90_a3,
     author = {D. V. Solomatin},
     title = {Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar {Cayley} graphs},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {40--49},
     publisher = {mathdoc},
     number = {90},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 40
EP  - 49
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/
LA  - ru
ID  - VTGU_2024_90_a3
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 40-49
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/
%G ru
%F VTGU_2024_90_a3
D. V. Solomatin. Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 40-49. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/