Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 40-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the characteristic properties of direct products of semigroups with zero admitting outerplanar Cayley graphs, as well as their generalizations in the defining relations of copresentation. Theorem 1. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits an outerplanar Cayley graph if and only if one of the following conditions holds: 1) $S \cong \langle a\mid a^3 = a^2\rangle^0 \times\langle b \mid b^{h+1}=b^h\rangle^0$ where $h$ is a natural number and $h<4$; 2) $S \cong\langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^ n \langle a_i \mid a_i^{2+1}= a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r\leqslant 2$; or $r = 3$, $n = 1$; 3) $S \cong \langle a\mid a^{r+m}=a^r\rangle^{+0}\times \langle b\mid b_2=b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m \leqslant 2$; 4) $S \cong \langle a_0\mid a_0^{r+1}= a_0^r\rangle \times \prod_{i=1}^n \langle a_i\mid a_i^2= a_i\rangle^{+0}$ where $n = 1$; or $r = 1$, $n = 2$. Theorem 2. A finite semigroup $S$ with zero that is a direct product of nontrivial cyclic semigroups with zero admits a generalized outerplanar Cayley graph if and only if one of the following conditions holds: 1) $S \cong \langle a\mid a^{r+m}=a^r\rangle^0\times \langle b\mid b^{h+t}=b^h\rangle^0$ where for natural numbers $r, m, h, t$ one of the following restrictions is satisfied: 1.1) $r=2$, $m=1$, $h<4$, $t=1$; 1.2) $r=3$, $m=1$, $h=3$, $t=1$; 2) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^{2+1}=a_i^2\rangle$ where $r$ and $n$ are natural numbers and $r \leqslant 3$; 3.1) $S \cong\langle a\mid a^{2+1}= a^2\rangle \times \langle b\mid b^{2+1}= b^2\rangle^{+0}$; 3.2) $S \cong\langle a\mid a^{r+m}= a^r\rangle^{+0} \times \langle b \mid b^2= b\rangle^{+0}$ where $r$ and $m$ are natural numbers and $m\leqslant 2$; 4) $S \cong \langle a_0\mid a_0^{r+1}=a_0^r\rangle\times\prod_{i=1}^n \langle a_i\mid a_i^2=a_i\rangle^{+0}$ where $n=1$; or $r=1$, $n=2$.
Keywords: right Cayley graphs of semigroups, planar graphs, semigroups with zero, direct products of semigroups, outerplanar graphs.
@article{VTGU_2024_90_a3,
     author = {D. V. Solomatin},
     title = {Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar {Cayley} graphs},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {40--49},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 40
EP  - 49
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/
LA  - ru
ID  - VTGU_2024_90_a3
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 40-49
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/
%G ru
%F VTGU_2024_90_a3
D. V. Solomatin. Direct products of cyclic semigroups with zero, admitting outerplanar and generalized outerplanar Cayley graphs. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 40-49. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a3/

[1] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp.

[2] Sedlacek J., “On a generalization of outerplanar graphs”, Casopis Pest. Mat., 113:2 (1988), 213–218 (In Czech) | DOI | MR | Zbl

[3] Solomatin D.V., “Issledovaniya polugrupp s planarnymi grafami Keli: rezultaty i problemy”, Prikladnaya diskretnaya matematika, 2021, no. 54, 5–57 | MR | Zbl

[4] Martynov P.O., “Konechnye svobodnye kommutativnye monoidy, dopuskayuschie obobschenno vneshneplanarnye grafy Keli”, Vestnik Omskogo universiteta, 2015, no. 4, 6–9