On automorphisms and derivations of reduced incidence algebras and coalgebras
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 33-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Incidence algebras of partially ordered sets over commutative rings are an important and characteristic example of function rings. From a partially ordered set, one can obtain an incidence coalgebra. Using certain equivalence relations on the set of all intervals of a locally finite poset, reduced incidence algebras and reduced incidence coalgebras are defined. These objects have a much more complex structure compared to incidence algebras and incidence coalgebras. This article introduces two types of automorphisms of the reduced incidence algebra -multiplicative and order, as well as one type of derivations - additive derivation. As for incidence coalgebras, there are no works devoted to their automorphisms or derivations. The article discusses a possible approach to the study of automorphisms and derivations of incidence coalgebras.
Keywords: incidence algebra, derivation.
Mots-clés : incidence coalgebra, automorphism
@article{VTGU_2024_90_a2,
     author = {P. A. Krylov and T. D. Norbosambuev},
     title = {On automorphisms and derivations of reduced incidence algebras and coalgebras},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--39},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a2/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - T. D. Norbosambuev
TI  - On automorphisms and derivations of reduced incidence algebras and coalgebras
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 33
EP  - 39
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a2/
LA  - ru
ID  - VTGU_2024_90_a2
ER  - 
%0 Journal Article
%A P. A. Krylov
%A T. D. Norbosambuev
%T On automorphisms and derivations of reduced incidence algebras and coalgebras
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 33-39
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a2/
%G ru
%F VTGU_2024_90_a2
P. A. Krylov; T. D. Norbosambuev. On automorphisms and derivations of reduced incidence algebras and coalgebras. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 33-39. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a2/

[1] Spiegel E., O'Donnell C.J., Incidence Algebras, Marcel Dekker, New York, 1997 | MR | Zbl

[2] Krylov P., Tuganbaev A., Incidence rings: automorphisms and derivations, 2023, arXiv: 2305.02984 [math.RA] | MR