A coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 152-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inhomogeneous non-stationary heating of constructions of various purposes induces thermal strains and stresses that should be considered in the comprehensive analysis of elastic systems. The mathematical formulation of the considered linear threedimensional thermoelasticity problems includes coupled non-self-adjoint differential equations of motion and thermal conductivity. Due to their integration difficulty, axisym-metric problems are usually analyzed instead. The purpose of this work is to develop a solution algorithm for the coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder. On the internal surface of the hollow anisotropic cylinder, the temperature variation function is known; on the external surface, the convective heat transfer and environmental temperature are given. The rate of the temperature load does not affect the inertial characteristics of the cylinder. Therefore, the equilibrium and heat equations can be added to the initial system of linear equations. The finite Fourier sine and cosine transforms and general biorthogonal transforms are used to study a non-self-adjoint system of differential equations and to develop a closed solution. The obtained solution allows one to determine the temperature field and the stress-strain state of a cylinder with its internal surface affected by non-stationary non-axisymmetric loading in terms of the temperature variation function.
Keywords: non-axisymmetric problem of thermoelasticity, long anisotropic cylinder, finite biorthogonal transforms.
@article{VTGU_2024_90_a12,
     author = {D. A. Shlyakhin and V. A. Yurin and O. V. Ratmanova},
     title = {A coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {152--166},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a12/}
}
TY  - JOUR
AU  - D. A. Shlyakhin
AU  - V. A. Yurin
AU  - O. V. Ratmanova
TI  - A coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 152
EP  - 166
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a12/
LA  - ru
ID  - VTGU_2024_90_a12
ER  - 
%0 Journal Article
%A D. A. Shlyakhin
%A V. A. Yurin
%A O. V. Ratmanova
%T A coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 152-166
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a12/
%G ru
%F VTGU_2024_90_a12
D. A. Shlyakhin; V. A. Yurin; O. V. Ratmanova. A coupled non-axisymmetric non-stationary problem of the thermoelasticity of a long cylinder. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 152-166. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a12/

[1] Podstrigaya Ya.S., Lomakin V.A., Kolyano Yu.M., Teplouprugost tel neodnorodnoi struktury, Nauka, M., 1984

[2] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970

[3] Mindli R.D., “Equations of high frequency vibrations of thermopiezoelectric crystal plates”, International Journal of Solids and Structures, 10:6 (1974), 625–637 | DOI | Zbl

[4] Lord H.W., Shulma Y., “A generalized dynamical theory of thermoelasticity”, Journal of the Mechanics and Physics of Solids, 15:5 (1967), 299–309 | DOI | Zbl

[5] Green A.E., Naghdi P.M., “Thermoelasticity without energy dissipation”, Journal of Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[6] Kovalenko A.D., Vvedenie v termouprugost, Naukova dumka, Kiev, 1965, 204 pp. | MR

[7] Sargsyan S.H., “Mathematical Model of Micropolar Thermo-Elasticity of Thin Shells”, Journal of Thermal Stresses, 36:11 (2013), 1200–1216 | DOI

[8] Verma K.L., “Thermoelastic waves in anisotropic plates using normal mode expansion method”, World Academy of Science, Engineering and Technology, 37 (2008), 573–580

[9] Zhornik A.I., Zhornik V.A., Savochka P.A., “Ob odnoi zadache termouprugosti dlya sploshnogo tsilindra”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 2012, no. 9 (1), 63–69

[10] Harmatij H., Krol M., Popovycz V., “Quasi-Static Problem of Thermoelasticity for Thermosensitive Infinite Circular Cylinder of Complex Heat Exchange”, Advances in Pure Mathematics, 3:4 (2013), 430–437 | DOI

[11] Kovalev V.A., Radaev Yu.N., Semenov D.A., “Svyazannye dinamicheskie zadachi giperbolicheskoi termouprugosti”, Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 9:4 (2) (2009), 94–127

[12] Shlyakhin D.A., Dauletmuratova Zh.M., “Nestatsionarnaya osesimmetrichnaya zadacha termouprugosti dlya zhestkozakreplennoi krugloi plastiny”, Inzhenernyi zhurnal: nauka i innovatsii, 2018, no. 5 (77), 1–15

[13] Shlyakhin D.A., Dauletmuratova Zh.M., “Nestatsionarnaya svyazannaya osesimmetrichnaya zadacha termouprugosti dlya zhestko zakreplennoi krugloi plastiny”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 4, 191–200

[14] Lychev S.A., “Svyazannaya dinamicheskaya zadacha termouprugosti dlya konechnogo tsilindra”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 2003, no. 4 (30), 112–124 | Zbl

[15] Lychev S.A., Manzhirov A.V., Yuber S.V., “Zamknutye resheniya kraevykh zadach svyazannoi termouprugosti”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2010, no. 4, 138–154

[16] Jabbari M., Sohrabpour S., Eslami M.R., “General Solution for Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Nonaxisymmetric Steady-State Loads”, Journal of Applied Mechanics, 70:1 (2003), 111–118 | DOI | Zbl

[17] Protsiuk B., Syniuta V., “Solution of the non-axisymmetric quasistatic thermoelasticity problem for multilayer cylinder with identical lame coefficients”, Scientific Journal of the Ternopil National Technical University, 89:1 (2018), 40–51 | DOI

[18] Tokovyy Yu.V., Chien-Ching Ma., “Analysis of 2D non-axisymmetric elasticity and thermoelasticity problems for radially inhomogeneous hollow cylinders”, Journal of Engineering Mathematics, 61 (2008), 171–184 | DOI | Zbl

[19] Kovalev V.A., Radaev Yu.N., Revinskii R.A., “Prokhozhdenie obobschennoi GNSh-termouprugoi volny cherez volnovod s pronitsaemoi dlya tepla stenkoi”, Izvestiya Saratovskogo universiteta. Novaya seriya. Ser. Matematika. Mekhanika. Informatika, 11:1 (2011), 59–70 | MR

[20] Sneddon I.N., Preobrazovaniya Fure, Izd-vo inostr. lit., M., 1955

[21] Senitskii Yu.E., “Mnogokomponentnoe obobschennoe konechnoe integralnoe preobrazovanie i ego prilozhenie k nestatsionarnym zadacham mekhaniki”, Izvestiya vuzov. Matematika, 1991, no. 4, 57–63 | MR | Zbl

[22] Senitskii Yu.E., “Biortogonalnoe mnogokomponentnoe konechnoe integralnoe preobrazovanie i ego prilozhenie k kraevym zadacham mekhaniki”, Izvestiya vuzov. Matematika, 1996, no. 8, 71–81 | MR | Zbl

[23] Lychev S.A., Senitskii Yu.E., “Nesimmetrichnye integralnye preobrazovaniya i ikh prilozheniya k zadacham vyazkouprugosti”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 2002, Spets. vyp., 16–38 | Zbl