Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 140-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary value problem of a one-dimensional viscous fluid flow in a deformable viscous porous medium with permeable boundaries is considered. The governing equations are the equations of mass conservation for each phase, the equation of momentum conservation for a liquid phase in terms of Darcy's law, the equation of momentum conservation for the whole system, and the rheological equation for porosity. The original system of equations in the Lagrange variables is reduced to a third-order equation for the porosity function. The first part of this paper presents the formulation of the problem, the definition of the classical solution to the considered problem, and the existence and uniqueness theorem for the problem of Holder classes. In the second part of this paper, the local theorem of existence and uniqueness for the problem of Holder classes is proved for an incompressible fluid using the Tikhonov-Schauder fixed-point theorem. The physical principle of the maximum porosity function is determined.
Keywords: Darcy's law, poroelasticity, local solvability, porosity.
Mots-clés : filtration
@article{VTGU_2024_90_a11,
     author = {A. A. Papin and M. A. Tokareva},
     title = {Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {140--151},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a11/}
}
TY  - JOUR
AU  - A. A. Papin
AU  - M. A. Tokareva
TI  - Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 140
EP  - 151
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a11/
LA  - ru
ID  - VTGU_2024_90_a11
ER  - 
%0 Journal Article
%A A. A. Papin
%A M. A. Tokareva
%T Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 140-151
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a11/
%G ru
%F VTGU_2024_90_a11
A. A. Papin; M. A. Tokareva. Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 140-151. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a11/

[1] Ivanov M.I., Kremer I.A., Laevsky Y.M., “On non-uniqueness of pressures in problems of fluid filtration in fractured-porous media”, Journal of Computational and Applied Mathematics, 425 (2023), 115052 | DOI | MR | Zbl

[2] Head M., Hickey J., Thompson J., Gottsmann J., Fournier N., “Rheological Controls on Magma Reservoir Failure in a Thermo-Viscoelastic Crust”, Journal of Geophysical Research: Solid Earth, 127:7 (2022) | DOI

[3] Lee J.J.E., Modelling and Simulation of Compacting Sedimentary Basins, University of Oxford, 2019

[4] Islamov D.F., Ramazanov A.Sh., “Issledovanie neizotermicheskoi dvumernoi filtratsii v sloistom plaste”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 75, 100–112

[5] Virts R.A., “Chislennoe reshenie dvumernoi zadachi filtratsii zhidkosti v deformiruemoi poristoi srede”, Izvestiya Altaiskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 1(117), 88–92

[6] Morency C., Huismans R.S., Beaumont C., Fullsack P., “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research, 112:B10 (2007)

[7] Fowler A., Mathematical Geoscience, Springer-Verlag London Limited, London, 2011 | MR | Zbl

[8] Tokareva M.A., Papin A.A., Virts R.A., “Filtration of liquid in a non-isothermal viscous porous medium”, Journal of Siberian Federal University - Mathematics and Physics, 13:6 (2020), 763–773 | MR | Zbl

[9] Koleva M.N., Vulkov L.G., “Numerical analysis of one dimensional motion of magma without mass forces”, Journal of Computational and Applied Mathematics, 366 (2020) | DOI | MR | Zbl

[10] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.M., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[11] Papin A.A., Tokareva M.A., “On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1397–1422 | MR | Zbl

[12] Antontsev S.N., Kazhikhov A.V., Monakhov V.N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR

[13] Ladyzhenskaya O.A., Uraltseva N.M., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR