A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 130-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-stationary burning rate of a solid rocket propellant under harmonic variations in pressure over the combustion surface is studied. The physical and mathematical model is based on the equations of heat transfer and oxidizer decomposition in the solid phase, and on the flow model for the reacting products of solid propellant gasification. Calculations are carried out for the unsteady burning rate of mixed solid propellants with harmonic pressure variations over the combustion surface. The dependence of the amplitude of the burning rate fluctuations on the frequency of the pressure variations are obtained. The amplitude of the burning rate varies non-monotonically with frequency. As the frequency increases, the amplitude first increases and then decreases. At a frequency of pressure variation with a semi-period greater than or equal to the characteristic time of relaxation for heat transfer in solid propellants, the instantaneous burning rate at the lowest point of the pressure curve is lower than the equilibrium value and is higher at the highest point. At high frequencies, the burning rate exceeds the corresponding equilibrium value at minimum pressure and is lower than the equilibrium value at maximum pressure.
Keywords: solid propellant, mathematical model, unsteady burning rate, burning rate amplitude.
Mots-clés : pressure fluctuations
@article{VTGU_2024_90_a10,
     author = {A. Yu. Krainov and K. M. Moiseeva},
     title = {A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {130--139},
     year = {2024},
     number = {90},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_90_a10/}
}
TY  - JOUR
AU  - A. Yu. Krainov
AU  - K. M. Moiseeva
TI  - A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 130
EP  - 139
IS  - 90
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_90_a10/
LA  - ru
ID  - VTGU_2024_90_a10
ER  - 
%0 Journal Article
%A A. Yu. Krainov
%A K. M. Moiseeva
%T A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 130-139
%N 90
%U http://geodesic.mathdoc.fr/item/VTGU_2024_90_a10/
%G ru
%F VTGU_2024_90_a10
A. Yu. Krainov; K. M. Moiseeva. A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 90 (2024), pp. 130-139. http://geodesic.mathdoc.fr/item/VTGU_2024_90_a10/

[1] Novozhilov B.V., Nestatsionarnoe gorenie tverdykh raketnykh topliv, Nauka, M., 1973, 176 pp.

[2] Zeldovich Ya.B., Leipunskii O.I., Librovich V.B., Teoriya nestatsionarnogo goreniya porokha, Nauka, M., 1975

[3] Novozhilov B.V., Marshakov V.N., “Perekhodnye rezhimy goreniya ballistitnogo porokha v poluzamknutom ob'eme”, Khimicheskaya fizika, 30:1 (2011), 25–37

[4] Novozhilov B.V., Marshakov V.N., “Obratnaya zadacha teorii nestatsionarnogo goreniya porokha”, Khimicheskaya fizika, 30:12 (2011), 26–31

[5] M. Sammerfild (red.), Issledovanie raketnykh dvigatelei na tverdom toplive, Izd-vo inostr. lit., M., 1963

[6] Price E. W., “Experimental Observations of Combustion Instability”, Fundamentals of Solid-Propellant Combustion, American Institute of Aeronautics and Astronautics, Inc., New York, 1984, 733–790

[7] Arkhipov V.A., Volkov S.A., Revyagin L.N., “Eksperimentalnoe issledovanie akusticheskoi provodimosti goryaschei poverkhnosti smesevykh tverdykh topliv”, Fizika goreniya i vzryva, 47:2 (2011), 74–80

[8] Coates R.L., Horton M.D., Ryan N.W., “T-burner method of determining the acoustic admit tance of burning propellants”, AIAA Journal, 2:6 (1964), 1119–1122 | DOI

[9] Arkhipov V.A., Bondarchuk S.S., Korotkikh A.G., “Sravnitelnyi analiz metodov izmereniya nestatsionarnoi skorosti goreniya. II. Rezultaty issledovaniya”, Fizika goreniya i vzryva, 46:5 (2010), 88–96

[10] Arkhipov V.A., Bondarchuk S.S., Korotkikh A.G., Kuznetsov V.T., Gromov A.A., Volkov S.A., Revyagin L.N., “Vliyanie dispersnosti alyuminiya na kharakteristiki zazhiganiya i nestatsionarnogo goreniya geterogennykh kondensirovannykh sistem”, Fizika goreniya i vzryva, 48:5 (2012), 148–159

[11] Rashkovskii S.A., Milekhin Yu.M., Klyuchnikov A.N., Fedorychev A.V., “Metod modelnogo uravneniya v teorii nestatsionarnogo goreniya tverdogo raketnogo topliva”, Fizika goreniya i vzryva, 48:1 (2012), 71–79

[12] Kuroedov A.A., Semenov P.A., “Issledovanie akusticheskoi neustoichivosti rabochego protsessa v RDTT s ispolzovaniem impulsnoi T-kamery”, Fizika goreniya i vzryva, 57:4 (2021), 57–68 | DOI

[13] Krainov A.Yu., Poryazov V.A., “Chislennoe modelirovanie pogasaniya porokha N pri rezkom sbrose davleniya na osnove sopryazhennoi modeli goreniya”, Fizika goreniya i vzryva, 51:6 (2015), 47–52

[14] Poryazov V.A., Krainov A.Yu., “Matematicheskaya model i raschet nestatsionarnoi skorosti goreniya metallizirovannykh tverdykh raketnykh topliv”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 50, 99–111 | MR

[15] Krainov A.Yu., Poryazov V.A., Krainov D.A., “Unsteady Combustion Modeling of Metallized Composite Solid Propellant”, International Review on Modelling and Simulations, 11:5 (2018), 297–305 | DOI

[16] Poryazov V.A., Moiseeva K.M., Krainov A.Yu., “Issledovanie goreniya smesevogo tverdogo topliva s dobavkoi poroshka bora”, Fizika goreniya i vzryva, 58:5 (2022), 106–114 | DOI

[17] Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P., Chislennoe reshenie mnogomerykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR