Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 135-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An increase in the wettability of dispersed particles with a polymer is one of the main tasks when creating polymer composite materials reinforced with a dispersed filler. Wettability can be increased due to the polymer shells provided on the surfaces of the particles. By varying the polymer shell thickness of the filler particles, the mechanical properties of the polymer composite materials can be controlled. In a polymer matrix with partial crystallinity, the stress-strain states can be induced by the orthotropy of macromolecules near the filler particles. The main reasons for the stress-strain states are the differences in the mechanical properties of the polymer and filler particles and the technological parameters. In this paper, mathematical modeling results for the occurrence of internal residual stresses are obtained using a three-phase structural model of polymer composite materials. It is shown that these technological stress-strain states are independent of the orientation of polymer molecules to the filler particles in crystallites, and they can decrease the mechanical properties of the entire composition. Thus, the effect of submicron filler particles with polymer shells on the mechanical properties of the polymer composition may vary depending on the amorphous or crystalline structure of the polymer matrix.
Keywords: polymer reinforced with a dispersed filler, stress-strain states, polymer composite material.
@article{VTGU_2024_89_a9,
     author = {I. N. Sidorov and V. A. Kuklin and A. I. Enskaya and M. P. Danilaev},
     title = {Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {135--146},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a9/}
}
TY  - JOUR
AU  - I. N. Sidorov
AU  - V. A. Kuklin
AU  - A. I. Enskaya
AU  - M. P. Danilaev
TI  - Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 135
EP  - 146
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a9/
LA  - ru
ID  - VTGU_2024_89_a9
ER  - 
%0 Journal Article
%A I. N. Sidorov
%A V. A. Kuklin
%A A. I. Enskaya
%A M. P. Danilaev
%T Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 135-146
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a9/
%G ru
%F VTGU_2024_89_a9
I. N. Sidorov; V. A. Kuklin; A. I. Enskaya; M. P. Danilaev. Effect of the parameters of inclusions with shells on the stress-strain state of a polymer matrix in a composite material reinforced with a dispersed filler. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 135-146. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a9/

[1] Rybak A., Malinowski L., Adamus-Wlodarczyk A., Ulanski P., “TheimaUy conductive shape memory polymer composites filled with boron nitride for heat management in electrical insulation”, Polymers, 13:13 (2021), 2161–2172

[2] Mittal V., “Functional polymer nanocomposites with graphene: a review”, Macromolecular Materials and Engineering, 299:8 (2014), 906–931

[3] Rosciszewski P., Lukasiak J., Dorosz A., Galinski J., Szponar M., “Biodegradation of polyorganosiloxanes”, Macromolecular Symposia, 130:1 (1998), 337–346 | DOI

[4] Li Y., Zhang L., Li C., “Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles”, Journal of colloid and interface science, 559 (2020), 273–281

[5] Chauhan S.R., Thakur S., “Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites”, Materials Design, 51 (2013), 398–408

[6] Hong J.I., Winberg P., Schadler L.S., Siegel R.W., “Dielectric properties of zinc oxide/low density polyethylene nanocomposites”, Materials Letters, 59:4 (2005), 473–476

[7] Vasyukova I.A., Zakharova O.V., Chaika V.V., “Toxic Effect of Metal-Based Nanomaterials on Representatives of Marine Ecosystems: A Review”, Nanobiotechnology Reports, 16:2 (2021), 138–154

[8] Wyszkowska J., Borowik A., Kucharski M., Kucharski J., “Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes”, Journal of Elementology, 18:4 (2013), 769–796

[9] Akhmadeev A.A., Bogoslov E.A., Danilaev M.P., Klabukov M.A., Kuklin V.A., “Influence of the Thickness of a Polymer Shell Applied to Surfaces of Submicron Filler Particles on the Properties of Polymer Compositions”, Mechanics of Composite Materials, 56 (2020), 241–248

[10] Danilaev M.P., Drobyshev S.V., Klabukov M.A., Kuklin V.A., Mironova D.A., “Formation of a Polymer Shell of a Given Thickness on Surfaces of Submicronic Particles”, Nanobiotechnology Reports, 16:2 (2021), 162–166

[11] Marra A., Silvestre C., Duraccio D., Cimmino S., “Polylactic acid/zinc oxide biocomposite films for food packaging application”, International journal of biological macromolecules, 88 (2016), 254–262

[12] Zaaba N.F., Jaafar M., “A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation”, Polymer Engineering Science, 60:9 (2020), 2061–2075

[13] Anisimova M.A., Knyazeva A.G., “Otsenka napryazhenii i deformatsii v protsesse formirovaniya perekhodnogo sloya mezhdu chastitsei i matritsei”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 63, 60–71

[14] Rahmanian V., Galeski A., “Cavitation in strained polyethylene/nanographene nanocomposites”, Polymer, 232:6 (2021), 124158–124169

[15] Danilaev M.P., Karandashov S.A., Kiyamov A.G., Klabukov M.A., Kuklin V.A., Sidorov I.N., Enskaya A.I., “Formirovanie i kharakter ostatochnykh napryazhenii v dispersno-napolnennykh polimernykh kompozitakh s chastichno kristallicheskoi strukturoi”, Fizicheskaya mezomekhanika, 25:2 (2022), 67–76

[16] Sedov L.I., Mekhanika sploshnoi sredy, uchebnik dlya vuzov, v. 1, Lan, SPb., 2004, 528 pp.

[17] Tarlakovskii D.V., Fedotenkov G.V., Obschie sootnosheniya i variatsionnye printsipy matematicheskoi teorii uprugosti, MAI, M., 2009, 112 pp.

[18] Casale A., Polymer stress reactions, Elsevier, 2012

[19] Christensen R.M., Mechanics of composite materials, Courier Corporation, 2012