Equations of viscoelasticity for an incompletely cured epoxy binder under small strains
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 119-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, the mechanical state of an epoxy binder during incomplete curing is studied. The degree of curing is described by a three-parameter kinetic equation of conversion with the material parameters and their temperature dependence determined using mathematical optimization methods based on isothermal conversion data. Mechanical properties of the incompletely cured polymer are obtained with the use of experimental data on uniaxial loading of reference samples according to a program assuming stretching to a specified strain at a given rate and holding at a fixed strain during a specified period of time. The physical equations for the polymer under study are assumed to be linear viscoelastic Volterra equations under the condition that the volumetric deformation is elastic. A method for determining the material parameters of the equations, i.e., instantaneous elastic constants and relaxation kernels, is proposed. Curing of the epoxy binder in vacuum is accompanied by foaming due to the presence of air bubbles in the binder. This phenomenon is shown to be prevented by pre-curing up to the “barrier” level in atmospheric conditions. The research results can be used when calculating the technological processes of manufacturing structures made of composites.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
epoxy binder, incomplete curing, kinetic equation, viscoelasticity equation, foaming.
                    
                  
                
                
                @article{VTGU_2024_89_a8,
     author = {V. M. Pestrenin and I. V. Pestrenina and L. V. Landik and T. N. Pomortseva and A. F. Merzlyakov},
     title = {Equations of viscoelasticity for an incompletely cured epoxy binder under small strains},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {119--134},
     publisher = {mathdoc},
     number = {89},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a8/}
}
                      
                      
                    TY - JOUR AU - V. M. Pestrenin AU - I. V. Pestrenina AU - L. V. Landik AU - T. N. Pomortseva AU - A. F. Merzlyakov TI - Equations of viscoelasticity for an incompletely cured epoxy binder under small strains JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 119 EP - 134 IS - 89 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a8/ LA - ru ID - VTGU_2024_89_a8 ER -
%0 Journal Article %A V. M. Pestrenin %A I. V. Pestrenina %A L. V. Landik %A T. N. Pomortseva %A A. F. Merzlyakov %T Equations of viscoelasticity for an incompletely cured epoxy binder under small strains %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 119-134 %N 89 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a8/ %G ru %F VTGU_2024_89_a8
V. M. Pestrenin; I. V. Pestrenina; L. V. Landik; T. N. Pomortseva; A. F. Merzlyakov. Equations of viscoelasticity for an incompletely cured epoxy binder under small strains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 119-134. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a8/
