Principles for implementing servo-constraints in nonholonomic mechanical systems
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 103-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of implementing servo-constraints in nonholonomic mechanical systems is considered. An attempt is made to outline the theoretical principles for composing equations of motion of nonholonomic mechanical systems with servo-constraints, to set the conditions for implementing servo-constraints, and to indicate the features of the introduction of control forces implementing the motion program from the point of view of their practical realization. In contrast to nonholonomic constraints, the method of implementation is important for servo-constraints. To illustrate the principles outlined in this study, a mathematical algorithm for controlling a wheeled two-link robot (driving trolley and trailer) with a differential drive is constructed using servo-constraints. Nonholonomic constraints are also imposed on the wheels of the system. On the basis of the joint solution of the equations of motion in quasi-velocities and time derivatives of non-holonomic and servo-constraints, the equations of motion of the wheeled robot are obtained. The dynamics of the wheeled robot is studied when a motion program is set that allows pursuing a target. The dynamics of the wheeled robot is studied when a motion program is set that controls the angle of deviation of the trailer from the driving trolley axis. The results are illustrated graphically.
Keywords: control, nonholonomic constraint, motion program, wheeled robot.
Mots-clés : servo-constraint, equations of motion
@article{VTGU_2024_89_a7,
     author = {E. A. Mikishanina},
     title = {Principles for implementing servo-constraints in nonholonomic mechanical systems},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {103--118},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a7/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Principles for implementing servo-constraints in nonholonomic mechanical systems
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 103
EP  - 118
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a7/
LA  - ru
ID  - VTGU_2024_89_a7
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Principles for implementing servo-constraints in nonholonomic mechanical systems
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 103-118
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a7/
%G ru
%F VTGU_2024_89_a7
E. A. Mikishanina. Principles for implementing servo-constraints in nonholonomic mechanical systems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 103-118. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a7/

[1] Chaplygin S.A., “On a Ball's Rolling on a Horizontal Plane”, Regular and Chaotic Dynamics, 7:2 (2002), 131–148 | DOI

[2] Kilin A.A., “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regular and Chaotic Dynamics, 6:3 (2001), 291–306

[3] Borisov A.V., Kazakov A.O., Sataev I.R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin top”, Regular and Chaotic Dynamics, 19:6 (2014), 718733 pp. | DOI

[4] Borisov A.V., Mamaev I.S., “Neodnorodnye sani Chaplygina”, Nelineinaya dinamika, 13:4 (2017), 625–639

[5] Borisov A.V., Mamaev I.S., “Dinamika sanei Chaplygina”, Prikladnaya matematika i mekhanika, 73:2 (2009), 219–225

[6] Mikishanina E.A., “Issledovanie vliyaniya sluchainykh vozmuschenii na dinamiku sistema: v zadache Suslova”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 3, 17–29

[7] Borisov A.V., Mikishanina E.A., “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462

[8] Marigo A., Bicchi A., “Rolling bodies with regular surface: Controllability theory and applica tions”, IEEE Trans. On Automatic Control, 45:9 (2000), 1586–1599

[9] Borisov A. V., Kilin A.A., Mamaev I.S., “How to control Chaplygin's sphere using rotors”, Regular and Chaotic Dynamics, 17:3-4 (2012), 258–272

[10] Bolotin S.V., “Zadacha optimalnogo upravleniya kacheniem shara s rotorami”, Nelineinaya dinamika, 8:4 (2012), 837–852

[11] Begen A., Teoriya giroskopicheskikh kompasov Anshyuttsa i Sperri i obschaya teoriya sistem s servosvyazyami, per. s fr. Ya.N. Roitenberga, Nauka, M., 1967, 171 pp.

[12] Appel P., Teoreticheskaya mekhanika, v. 2, Dinamika sistemy. Analiticheskaya mekhanika, Fizmatlit, M., 1960, 487 pp.

[13] Borisov A.V., Mamaev I.S., Kilin A.A., Bizyaev I.A., Izbrannye zadachi negolonomnoi mekhaniki, In-t kompyuternykh issled., M.–Izhevsk, 2016, 883 pp.

[14] Kozlov V.V., “The Dynamics of systems with servoconstraints. I”, Regular and Chaotic Dynamics, 20:3 (2015), 205–224

[15] Kozlov V.V., “The Dynamics of systems with servoconstraints. II”, Regular and Chaotic Dynamics, 20:4 (2015), 401–427

[16] Azizov A.G., “K dinamike sistem, stesnennykh servosvyazyami”, Nauchnye trudy Tashkentskogo gosudarstvennogo universiteta im. V.I. Lenina, 1971, no. 397, 3–9

[17] Kirgetov V.I., “O dvizhenii upravlyaemykh mekhanicheskikh sistem s uslovnymi svyazyami (servosvyazyami)”, Prikladnaya matematika i mekhanika, 31:3 (1967), 433–446

[18] Kozlov V.V., “Printsipy dinamiki i servosvyazi”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika. Mekhanika, 1989, no. 5, 59–66

[19] Tatarinov Ya.V., Uravneniya klassicheskoi mekhaniki v lakonichnykh formakh, Izd-vo Tsentra prikladnykh issled. pri mekh.-mat. fak-te MGU, M., 2005, 86 pp.

[20] Chen Y.H., “Mechanical systems under servo-constraints: the Lagrange's approach”, Mechatronics, 15:3 (2005), 317–337

[21] Yang Y., Betsch P., Altmann R., “A numerical method for the servo constraint problem of underactuated mechanical systems”, Pamm, 15:1 (2015), 79–80

[22] Mikishanina E.A., “Dinamika kacheniya sfericheskogo robota s mayatnikovym privodom, upravlyaemogo servosvyazyu Bilimovicha”, Teoreticheskaya i matematicheskaya fizika, 211:2 (2022), 281–294

[23] Mikishanina E.A., “Motion Control of a spherical robot with a pendulum actuator for pursuing a target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913

[24] Bizyaev I.A., “The Inertial motion of a Roller Racer”, Regular and Chaotic Dynamics, 22:3 (2017), 239–247

[25] Korolev S.A., Lipanov A.M., Rusyak I.G., Tenenev V.A., “Razrabotka podkhodov k resheniyu obratnoi zadachi vneshnei ballistiki v razlichnykh usloviyakh primeneniya”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2019, no. 57, 7683