Simulation of simultaneous tablet–emitter surface ignition by a flow of two-phase combustion products and tablet–emitter ejection from a cartridge case
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 77-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents the results of mathematical modeling of the ignition and ejection of a tablet-emitter from a cartridge case. Heat exchange between the tablet-emitter surface and combustion products is a result of the thermal conductivity of the particles, gas convection, and radiation. When the tablet surface temperature reaches the ignition temperature, the combustion products begin to move from the tablet-emitter into the free volume of the cartridge case. When the burst pressure is reached, the membrane opens and the combustion products flow out of the cartridge case. Affected by the pressure of the ejected combustion products, the tablet comes into motion and leaves the cartridge case. Time dependences of the average volume pressure in the cartridge case are obtained for two particle radii (1 and 25 $\mu$m). The ignition time for the end surface of the tablet-emitter is estimated. The gap size between the cylindrical surfaces of the tablet and the cartridge case varies from 0.5 to 2 mm. The velocity of the tablet-emitter discharge from the cartridge case is obtained. It is revealed that gap size has a significant impact on the ignition process.
Keywords: false heat targets, combustion products, mathematical modeling, muzzle velocity, internal ballistics.
Mots-clés : combustion
@article{VTGU_2024_89_a5,
     author = {N. R. Gimaeva and L. L. Min'kov},
     title = {Simulation of simultaneous tablet{\textendash}emitter surface ignition by a flow of two-phase combustion products and tablet{\textendash}emitter ejection from a cartridge case},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {77--88},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a5/}
}
TY  - JOUR
AU  - N. R. Gimaeva
AU  - L. L. Min'kov
TI  - Simulation of simultaneous tablet–emitter surface ignition by a flow of two-phase combustion products and tablet–emitter ejection from a cartridge case
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 77
EP  - 88
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a5/
LA  - ru
ID  - VTGU_2024_89_a5
ER  - 
%0 Journal Article
%A N. R. Gimaeva
%A L. L. Min'kov
%T Simulation of simultaneous tablet–emitter surface ignition by a flow of two-phase combustion products and tablet–emitter ejection from a cartridge case
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 77-88
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a5/
%G ru
%F VTGU_2024_89_a5
N. R. Gimaeva; L. L. Min'kov. Simulation of simultaneous tablet–emitter surface ignition by a flow of two-phase combustion products and tablet–emitter ejection from a cartridge case. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 77-88. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a5/

[1] Vernidub I.I., Puzyrev N.G., Spetsialisty po vzryvchatym veschestvam, pirotekhnike i boepripasam, biogr. entsikl., AviaRus-XXI, M., 2006, 702 pp.

[2] Shidlovskii A.A., Osnovy pirotekhniki, 4-e izd., Mashinostroenie, M., 1973, 292 pp.

[3] Danilin Yu.G., Nazarov N.A., Novikova N.I., Vzryvchatye veschestva, pirotekhnika, sredstva initsiirovaniya v poslevoennyi period: Lyudi. Nauka. Proizvodstvo, Gumanistika, M.–SPb, 2001, 928 pp.

[4] Melnikov V.E., Sovremennaya pirotekhnika, Nauka, M., 2014, 480 pp.

[5] Qiang Li, Peijin Liu, Guoqiang He, “Fluid-solid coupled simulation of the ignition transient of solid rocket motor”, Acta Astronautica, 110 (2015), 180–190

[6] Minkov L.L., Shrager E.R., Kiryushkin A.E., “Two approaches for simulating the burning sur face in gas dynamics”, Key Engineering Materials, 685 (2016), 114–118

[7] Nigmatulin R.I., Dinamika mnogofaznykh sred, v. I, Nauka, M., 1987, 464 pp.

[8] Yingkun Li, Xiong Chen, Jinsheng Xu, Changsheng Zhou, Omer Musa, “Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor”, Acta Astronautica, 146 (2018), 46–65

[9] Arkhipov V.A., Bondarchuk S.S., Bondarchuk I.S., Zolotorev N.N., Kozlov E.A., Orlova M.P., “Matematicheskoe modelirovanie utilizatsii golovnogo obtekatelya rakety-nositelya posle ego otrabotki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2023, no. 84, 52–67

[10] Goodman T.R., “Application of integral methods to transient nonlinear heat transfer”, Advances in Heat Transfer, v. 1, eds. T. Irvine, J. Hartnett, Academic Press, New-York, 1964, 51–122

[11] Sorkin R.E., Teoriya vnutrikamernykh protsessov v raketnykh sistemakh na tverdom toplive. Vnutrennyaya ballistika, Nauka, M., 1983, 288 pp.

[12] Yongtao Wang, Xiaobing Zhang, “Numerical investigation on muzzle flow characteristics for small combustion chamber with embedded propelled body”, Structures, 50 (2023), 1783–1793

[13] Yongtao Wang, Shukui Ding, Xiaobing Zhang, “A novel structure to inhibit barrel erosion induced by thermal effects in a propulsion system”, International Communications in Heat and Mass Transfer, 147 (2023), 106991

[14] Vasquez S.A., Ivanov V.A., “A phase coupled method for solving multiphase problems on unstructured meshes”, FEDSM2000, Proceedings of the ASME Fluids Engineering Division Summer Meeting, 251, American Society of Mechanical Engineers, 2000, 659–664