A study of deformation mechanisms for a two-dimensional metamaterial
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 51-65
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a numerical study of a two-dimensional tetrachiral metamaterial and the effect of unit cell parameters on its mechanical behavior. Finite element simulations are performed using independently varied geometric parameters of the chiral unit cell. Chiral structures can induce the compression-torsion effect and the deflection in mechanical metamaterials. The sample deflection is affected by the following factors: ring deformation, ligament deformation, and structure twisting. The highest strain estimated by the deflection of the metamaterial sample from the initial position is observed at an optimal ratio of ligament length to ring size. The effect of structural parameters on the deformation, stress distribution, and effective elastic properties of a two-dimensional metamaterial sample under uniaxial compression is studied and analyzed. For all variable parameters, a qualitatively similar nature of the equivalent stress distribution is revealed. It is found that a decrease in the volume of the main material in the metamaterial sample entails a decrease in effective Young's modulus. The parameters accounting for the auxetic properties of the metamaterial are obtained. Effective Poisson's ratio is determined in the range from $-$0.1 to 0.95.
Keywords: numerical simulation, finite element method, structure-property relationship, mechanical metamaterial.
Mots-clés : chiral structure, uniaxial deformation
@article{VTGU_2024_89_a3,
     author = {L. R. Akhmetshin and K. V. Iokhim and E. A. Kazantseva and I. Yu. Smolin},
     title = {A study of deformation mechanisms for a two-dimensional metamaterial},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {51--65},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a3/}
}
TY  - JOUR
AU  - L. R. Akhmetshin
AU  - K. V. Iokhim
AU  - E. A. Kazantseva
AU  - I. Yu. Smolin
TI  - A study of deformation mechanisms for a two-dimensional metamaterial
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 51
EP  - 65
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a3/
LA  - ru
ID  - VTGU_2024_89_a3
ER  - 
%0 Journal Article
%A L. R. Akhmetshin
%A K. V. Iokhim
%A E. A. Kazantseva
%A I. Yu. Smolin
%T A study of deformation mechanisms for a two-dimensional metamaterial
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 51-65
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a3/
%G ru
%F VTGU_2024_89_a3
L. R. Akhmetshin; K. V. Iokhim; E. A. Kazantseva; I. Yu. Smolin. A study of deformation mechanisms for a two-dimensional metamaterial. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 51-65. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a3/

[1] Akhmetshin L.R., Iokhim K., Kazantseva E., Smolin I.Yu., “Response evolution of a tetrachiral metamaterial unit cell under architectural transformations”, Symmetry, 15:1 (2022), 14 pp.

[2] Schaedler T., Jacobsen A., Torrents A., Sorensen A., Lian J., Greer J., Valdevit L., Carter W.B., “Ultralight metallic microlattices”, Science, 334:6058 (2011), 962–965

[3] Tan T., Yan Zh., Zou H., Ma K., Liu F., Zhao L., Peng Zh., Zhang W., “Renewable energy har vesting and absorbing via multi-scale metamaterial systems for Internet of things”, Applied Energy, 254 (2019), 113717

[4] Cummer S.A., Christensen J., Alu A., “Controlling sound with acoustic metamaterials”, Nature Reviews Materials, 1 (2016), 16001

[5] Kolubaev E.A., Rubtsov V.E., Chumaevskii A.V., Astafurova E.G., “Nauchnye podkhody k mikro-, mezo- i makrostrukturnomu dizainu ob'emnykh metallicheskikh i polimetallicheskikh materialov s ispolzovaniem metoda elektronno-luchevogo additivnogo proizvodstva”, Fizicheskaya mezomekhanika, 25:4 (2022), 5–18

[6] Zelepugin S.A., Tolkachev V.F., Tyryshkin I.M., “Analiz effektivnosti protivoudarnoi stoikosti dvukh grupp keramicheskikh i kompozitnykh materialov”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 80, 85–96

[7] Sangsefidi A.R., Kadkhodapour J., Anaraki A.P., Dibajian S.H., Schmauder S., “Povyshenie effektivnosti sbora energii priborami na osnove metamaterialov”, Fizicheskaya mezomekhanika, 25:4 (2022), 106–121 | DOI

[8] Prall D., Lakes R.S., “Properties of a chiral honeycomb with a poisson's ratio of -1”, Interna tional Journal of Mechanical Sciences, 39:3 (1997), 305–314

[9] Eidini M., “Zigzag-base folded sheet cellular mechanical metamaterials”, Extreme Mechanics Letters, 6 (2016), 96–102

[10] Zheng X., Lee H., Weisgraber T.H., Shusteff M., De Otte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jackson J.A., Kucheyev S.O., Fang N.X., Spadaccini C.M., “Ultralight, ultrastiff mechanical metamaterials”, Science, 344 (2014), 1373–1377

[11] Gold V., Compendium of chemical terminology, IUPAC Compendium of Chemical Terminology, 528, International Union of Pure and Applied Chemistry, 2014

[12] Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A., “Negative Poisson's ratio for cubic crystals and nano/microtubes”, Physical Mesomechanics, 17:2 (2014), 97–115

[13] Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A., “Thin Homogeneous Two-Layered Plates of Cubic Crystals with Different Layer Orientation”, Physical Mesomechanics, 22:4 (2019), 261–268

[14] Zhong R., Fu M., Chen X., Zheng B., Hu L., “A novel three-dimensional mechanical metamaterial with compression-torsion properties”, Composite Structures, 226 (2019), 111232

[15] Zheng B.-B., Zhong R.-C., Chen X., Fu M.-H., Hu L.-L., “A novel metamaterial with tension-torsion coupling effect”, Materials Design, 171 (2019), 107700

[16] Frenzel T., Kadic M., Wegener M., “Three-dimensional mechanical metamaterials with a twist”, Science, 358 (2017), 1072–1074

[17] Spadoni A., Ruzzene M., “Elasto-static micropolar behavior of a chiral auxetic lattice”, Journal of the Mechanics and Physics of Solids, 60 (2012), 156–171 | DOI

[18] Akhmetshin L.R., Smolin I.Yu., “Analiz nekotorykh metodov soedineniya yacheek v mekhanicheskom tetrakhiralnom metamateriale”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 77, 27–37

[19] Akhmetshin L.R., Smolin I.Yu., “Influence of unit cell parameters of tetrachiral mechanical metamaterial on its effective properties”, Nanoscience and Technology: An International Journal, 11:3 (2020), 265–273