Mots-clés : dimensions $ind$, $\mathrm{dim}$
@article{VTGU_2024_89_a2,
author = {T. F. Zhuraev and Q. R. Zhuvonov},
title = {Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum~$X$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {32--50},
year = {2024},
number = {89},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/}
}
TY - JOUR AU - T. F. Zhuraev AU - Q. R. Zhuvonov TI - Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 32 EP - 50 IS - 89 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/ LA - ru ID - VTGU_2024_89_a2 ER -
%0 Journal Article %A T. F. Zhuraev %A Q. R. Zhuvonov %T Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 32-50 %N 89 %U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/ %G ru %F VTGU_2024_89_a2
T. F. Zhuraev; Q. R. Zhuvonov. Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 32-50. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/
[1] Fedorchuk V.V., “Veroyatnostnye mery v topologii”, Uspekhi matematicheskikh nauk, 46:1 (277) (1991), 41–80
[2] Schepin E.V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi matematicheskikh nauk, 36:3 (1981), 3–62
[3] Fedorchuk V.V., “Slabo beskonechnomernye prostranstva”, Uspekhi matematicheskikh nauk, 62:2 (374) (2007), 109–164
[4] Zhuraev T.F., Nekotorye geometricheskie svoistva funktora veroyatnostnykh mer i ego podfunktorov, dis. kand. fiz.-mat. nauk, M., 1989, 90 pp.
[5] Zhuraev T.F., “Nekotorye osnovnye svoistva funktora $P_f$”, Vestnik Moskovskogo uni versiteta. Ser. 1. Matematika, mekhanika, 1989, no. 6, 29–33
[6] Zhuraev T.F., “Prostranstvo vsekh veroyatnostnykh mer s konechnymi nositelyami gomeomorfno beskonechnomernomu lineinomu prostranstvu”, Obschaya topologiya. Prostranstva i otobrazheniya, Iz-vo Mosk. un-ta, M., 1989, 66–70
[7] Zhuraev T.F., Nekotorye geometricheskie svoistva podfunktorov funktora $P$ veroyatnostnykh mer, Dep. v VINITI AN SSSR 05.07.1989, No 4471-V89, MGU, M., 1989, 60 pp.
[8] Zhuraev T.F., “O funktore P veroyatnostnykh mer”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika, mekhanika, 1990, no. 1, 26–30
[9] Zhuraev T.F., Tursunova Z.O., “Nekotorye geometricheskie i topologicheskie svoistva prostranstva veroyatnostnykh mer, opredelennye v beskonechnom kompakte”, Uzbekskii matematicheskii zhurnal, 2016, no. 1, 39–48
[10] Banakh T., Radul T., Zarichnyi M., Absorbing Sets in Infinite-dimensional Manifolds, Math Studies Monogh. Ser., 1, VNTL Publishers, 1996
[11] Basmanov V.N., “Kovariantnye funktory, retrakty i razmernost”, Doklady AN SSSR, 271:5 (1983), 1033–1036
[12] Gurevich V., Volmen G., Teoriya razmernosti, pod red. i s predisl. P.S. Aleksandrova, Gos. izd-vo inostr. lit., M., 1948, 232 pp.
[13] Hurewicz W., “Uber unendlich-dimensionale punktmengen”, Proc. Akad. Amsterdam, 31 (1928), 916–922
[14] Smirnov Yu.M., “Ob universalnykh prostranstvakh dlya nekotorykh klassov beskonechnomernykh prostranstv”, Izvestiya AN SSSR. Ser. matematicheskaya, 23 (1959), 185–196
[15] Aleksandrov P.S., Pasynkov B.A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp.