Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 32-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note, we consider dimensional properties of the subspace of probability measure spaces $P(X)$ for which transfinite dimensional functions $ind$, $Ind$ и $\mathrm{dim}$ are defined. It is shown that countability of a compact set $X$ is equivalent to the existence of dimensions $ind\,P_\omega(X)$, $Ind\,P_\omega(X)$, $\mathrm{dim}\,P_\omega(X)$, $ind\,P_f(X)$, $Ind\,P_f(X)$ and $\mathrm{dim}\,P_f(X)$ for the subspaces $P_\omega(X)$, $P_f(X)$, $P_n(X)$ respectively. It is also noted that for any compact $C$-space of the subspaces $P_n(X)$, $P_\omega(X)$, $P_f(X)$ the space $P(x)$ are compact $C$-spaces. If for an infinite compact set $X$ the subspace $P_\omega(X)$ contains the Hilbert cube $\mathcal{Q}$, then there exists a number $n\in N$, $n>1$, such that $X^n \sigma^{n-1}$ contains the Hilbert cube $\mathcal{Q}$. Further, for an infinite compact set $X$, a number of subspaces $Y$ of the compact set $P (x)$ which are $\mathcal{Q}$-, $\ell_2$-, $\ell_2^f$- and $\Sigma$-manifolds are identified. In particular, for a proper closed subset $A\subset X$, the subspaces $S_p(A)$ are $\ell_2$-manifolds; for any $n \in N$, $n>$1, $P(X) \setminus P_n(X)$ are $\mathcal{Q}$-manifolds; for any proper everywhere dense countable subspace $A\subset X$, the subspace $P_\omega(A$) is the boundary set of the compact set $P (x)$. If $P_\omega(X)$ contains the Hilbert cube $\mathcal{Q}$, then the subspace $P_\omega$(X) is homeomorphic to the space $\Sigma$. It is considered in which cases everywhere dense subsets $A$ of the spaces $P(X)$ defined in an infinite compactum $X$ are its boundary set. It is also shown which everywhere dense subsets $A\subset P(X)$ and $B\subset P(Y)$ for infinite compact sets $X$ and $Y$ of the spaces $P(X)$ and $P(Y)$, respectively, are at the same time mutually homeomorphic.
Keywords: probability measures, $Ind$, boundary sets.
Mots-clés : dimensions $ind$, $\mathrm{dim}$
@article{VTGU_2024_89_a2,
     author = {T. F. Zhuraev and Q. R. Zhuvonov},
     title = {Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum~$X$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {32--50},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/}
}
TY  - JOUR
AU  - T. F. Zhuraev
AU  - Q. R. Zhuvonov
TI  - Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 32
EP  - 50
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/
LA  - ru
ID  - VTGU_2024_89_a2
ER  - 
%0 Journal Article
%A T. F. Zhuraev
%A Q. R. Zhuvonov
%T Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 32-50
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/
%G ru
%F VTGU_2024_89_a2
T. F. Zhuraev; Q. R. Zhuvonov. Subspaces dimensional properties that are boundary sets of the probability measures space, defined in an infinite compactum $X$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 32-50. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a2/

[1] Fedorchuk V.V., “Veroyatnostnye mery v topologii”, Uspekhi matematicheskikh nauk, 46:1 (277) (1991), 41–80

[2] Schepin E.V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi matematicheskikh nauk, 36:3 (1981), 3–62

[3] Fedorchuk V.V., “Slabo beskonechnomernye prostranstva”, Uspekhi matematicheskikh nauk, 62:2 (374) (2007), 109–164

[4] Zhuraev T.F., Nekotorye geometricheskie svoistva funktora veroyatnostnykh mer i ego podfunktorov, dis. kand. fiz.-mat. nauk, M., 1989, 90 pp.

[5] Zhuraev T.F., “Nekotorye osnovnye svoistva funktora $P_f$”, Vestnik Moskovskogo uni versiteta. Ser. 1. Matematika, mekhanika, 1989, no. 6, 29–33

[6] Zhuraev T.F., “Prostranstvo vsekh veroyatnostnykh mer s konechnymi nositelyami gomeomorfno beskonechnomernomu lineinomu prostranstvu”, Obschaya topologiya. Prostranstva i otobrazheniya, Iz-vo Mosk. un-ta, M., 1989, 66–70

[7] Zhuraev T.F., Nekotorye geometricheskie svoistva podfunktorov funktora $P$ veroyatnostnykh mer, Dep. v VINITI AN SSSR 05.07.1989, No 4471-V89, MGU, M., 1989, 60 pp.

[8] Zhuraev T.F., “O funktore P veroyatnostnykh mer”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika, mekhanika, 1990, no. 1, 26–30

[9] Zhuraev T.F., Tursunova Z.O., “Nekotorye geometricheskie i topologicheskie svoistva prostranstva veroyatnostnykh mer, opredelennye v beskonechnom kompakte”, Uzbekskii matematicheskii zhurnal, 2016, no. 1, 39–48

[10] Banakh T., Radul T., Zarichnyi M., Absorbing Sets in Infinite-dimensional Manifolds, Math Studies Monogh. Ser., 1, VNTL Publishers, 1996

[11] Basmanov V.N., “Kovariantnye funktory, retrakty i razmernost”, Doklady AN SSSR, 271:5 (1983), 1033–1036

[12] Gurevich V., Volmen G., Teoriya razmernosti, pod red. i s predisl. P.S. Aleksandrova, Gos. izd-vo inostr. lit., M., 1948, 232 pp.

[13] Hurewicz W., “Uber unendlich-dimensionale punktmengen”, Proc. Akad. Amsterdam, 31 (1928), 916–922

[14] Smirnov Yu.M., “Ob universalnykh prostranstvakh dlya nekotorykh klassov beskonechnomernykh prostranstv”, Izvestiya AN SSSR. Ser. matematicheskaya, 23 (1959), 185–196

[15] Aleksandrov P.S., Pasynkov B.A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp.