Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 162-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the stress-strain state of model bone meso-volumes containing cancellous and cortical bone tissue together and micro-volumes of cortical and cancellous bone tissue separately under uniaxial compression are presented. Unconventional effective mechanical parameters, serving as a relative measure of the deformation response manifestation for the considered meso- or micro-volume of bone in three perpendicular directions, and the effective modulus of elasticity under axial compression are determined. It has been revealed that the micro- and meso-volumes of bone tissue with different structures and compositions may differ in the pattern of stress and strain distribution, but have similar elastic moduli, and vice versa. It has been shown that the micro- and meso-volumes of bone tissue samples with different structures and compositions, having the same distribution of stresses and strains, are characterized by the same values of the introduced effective mechanical parameters. It is proposed to use effective mechanical characteristics and longitudinal modulus of elasticity during the selection and development of individual osteoimplants. When installing an implant into the bone, it is suggested to coordinate the orthotropic axes of the implant and the replaced bone site to maintain a favorable mechanical state of the bone consistent with that before implant installation.
Keywords: stress-strain state, effective mechanical parameters, cortical bone tissue, cancellous bone tissue, computer modeling
Mots-clés : osteoimplants.
@article{VTGU_2024_89_a11,
     author = {T. V. Chaykovskaya},
     title = {Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {162--175},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a11/}
}
TY  - JOUR
AU  - T. V. Chaykovskaya
TI  - Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 162
EP  - 175
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a11/
LA  - ru
ID  - VTGU_2024_89_a11
ER  - 
%0 Journal Article
%A T. V. Chaykovskaya
%T Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 162-175
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a11/
%G ru
%F VTGU_2024_89_a11
T. V. Chaykovskaya. Effective mechanical parameters of bone tissue samples for the selection of individual osteoimplants. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 162-175. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a11/

[1] Sagalovski S., Shenert M., “Kletochno-molekulyarnye mekhanizmy razvitiya asepticheskoi nestabilnosti endoproteza tazobedrennogo sustava”, Travma, 13:1 (2012), 153–160

[2] Goldman H.M., Bromage T.G., “Preferred collagen fiber orientation in the human mid-shaft femur”, The Anatomical Record Part A, 272A:1 (2003), 434–445

[3] Avrunin A.S., Tses E.A., “The birth of a new scientific field - biomechanics of the skeleton. Julius Wolff and his work “Das Gesetz der Transformation der Knochen””, History of Medicine, 3:4 (2016), 447–461

[4] Mellon S.J., Tanner K.E., “Bone and its adaptation to mechanical loading: a review”, International Materials Reviews, 57:5 (2012), 235–255

[5] Keaveny T.M., Morgan E.F., Yeh O.C., Biomedical Engineering and Design Handbook, ed. M. Kutz, McGraw-Hill, New York, 2009

[6] Cowin S.C., Bone Mechanics Handbook, 2nd ed., CRC Press, New York, 2001, 978 pp.

[7] Rosa N., Moura M.F.S.F., Olhero S., Simoes R., Magalhaes F.D., Marques A.T., Ferreira J.P.S., Reis A.R., Carvalho M., Parente M., “Bone: An Outstanding Composite Material”, Applied Sciences, 12:7 (2022), 3381, 1–15

[8] Novitskaya E., Chen P.-Y., Hamed E., Li J., Lubarda V.A., Jasiuk I., Mckittrick J., “Recent advances on the measurement and calculation of the elastic moduli of cortical and trabecular bone: a review”, Theoretical and Applied Mechanics, 38:3 (2011), 209–297

[9] Orava H., Huang L., Ojanen S.P., Makela J.T.A., Finnila M.A.J., Saarakkala S., Herzog W., Korhonen R.K., Toyras J., Tanska P., “Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses - a finite element study”, Journal of the Mechanical Behavior of Biomedical Materials, 128 (2022), 105129, 1–15

[10] Lee T., Garlapati R.R., Lam K., Lee P.V., Chung Y.S., Choi J.B., Vincent T.B., Das De S., “Fast tool evaluation of iliac crest tissue elastic properties using the reduced-basis methods”, Journal of Biomechanical Engineering, 132 (2010), 121009, 1–8

[11] Xi L., Barbieri E., Wang P., Wu W., Gupta H., “Separating effects of bone-quality changes at multiple scales in steroid-induced osteoporosis: Combining multiscale experimental and modelling approaches”, Mechanics of Materials, 157 (2021), 103821, 1–15

[12] Lovrenic-Jugovic M., Tonkovic Z., Skozrit I., “Experimental and numerical investigation of cyclic creep and recovery behavior of bovine cortical bone”, Mechanics of Materials, 146 (2020), 103407, 1–14

[13] Lubarda V.A., Novitskaya E.E., Kittricka J.Mc., Bodde S.G., Chen P.Y., “Elastic properties of cancellous bone in terms of elastic properties of its mineral and protein phases with application to their osteoporotic degradation”, Mechanics of Materials, 44 (2012), 139–150

[14] Belov N.N., Yugov N.T., Ischenko A.N., Afanaseva S.A., Khabibullin M.V., Yugov A.A., Stukanov A.L., “Matematicheskoe modelirovanie razrusheniya kostnoi tkani pri dinamicheskom nagruzhenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 2 (10), 28–37

[15] Kolmakova T. V., “Computer-aided study of the mechanical behavior of the jaw bone fragments under uniaxial compression”, AIP Conference Proceedings, 1760 (2016), 020030, 1–4

[16] Kolmakova T., “Computer modeling of the structure of the cortical and trabecular bone tissue”, AIP Conference Proceedings, 1683, 2015, 020087, 1–4

[17] Lastovkina Y.N., Kolmakova T. V., “Computer modelling of the microstructure of the trabecular bone fragments for the study of stress-strain state”, IOP Publishing: Journal of Physics: Conference Series, 769 (2016), 012020, 1–4

[18] Marchenko E.S., Chaikovskaya T.V., “Issledovanie napryazhenno-deformirovannogo sostoyaniya gubchatoi kostnoi tkani pri odnoosnom szhatii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2023, no. 83, 127–142

[19] Kristensen R., Vvedenie v mekhaniku kompozitov, per. s angl. A.I. Beilya, N.P. Zhmudya, ed. Yu.M. Tarnopolskii, Mir, M., 1982, 334 pp.

[20] Kolmakova T.V., Modelirovanie struktury, raschet napryazhenno-deformirovannogo sostoyaniya, mekhanicheskikh svoistv kostnykh tkanei i upravlenie kharakteristikami osteoimplantatov, dis. d-pa fiz.-mat. nauk, Tomsk, 2013, 273 pp.

[21] Figurska M., “Struktura kompaktnoi kostnoi tkani”, Rossiiskii zhurnal biomekhaniki, 2007, no. 3, 28–38

[22] Fedida R., Yosibash Z., Milgrom C., Joskowicz L., “Femur mechanical simulation using high-order FE analysis with continuous mechanical properties”, 2nd International Conference on Computational Bioengineering (Lisbon, Portugal, 2005)