Pseudo-riemannian metrics on a variety of applied covectors
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 17-31
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on the three-dimensional affine space $A_3$, a six-dimensional point-vector space $E_6$ is constructed, where its point is an ordered pair consisting of a point from $A_3$ and a covector, and its vector is an ordered pair consisting of a vector and a covector. There is a pseudo-Euclidean metrics of signature in $E_6$ $(3,3)$. The problem of finding all affine semi-invariant pseudo-Riemannian metrics in the tangent fibration of a given space is solved. It is shown that finding semi-invariant metrics leads to finding invariant metrics, and there is a one-parameter family of such metrics (including the pseudo-Euclidean metrics as the trivial case). For the given family of metrics, the Levi-Civita connection is constructed, and a description of geodesic lines of this connection in the general case is given.
Mots-clés :
affine space
Keywords: point-vector space, covector, pseudo-Euclidean metrics, pseudo-Riemannian metrics, Levi-Civita connection, geodesic lines.
Keywords: point-vector space, covector, pseudo-Euclidean metrics, pseudo-Riemannian metrics, Levi-Civita connection, geodesic lines.
@article{VTGU_2024_89_a1,
author = {M. S. Bukhtyak},
title = {Pseudo-riemannian metrics on a variety of applied covectors},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {17--31},
publisher = {mathdoc},
number = {89},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/}
}
TY - JOUR AU - M. S. Bukhtyak TI - Pseudo-riemannian metrics on a variety of applied covectors JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 17 EP - 31 IS - 89 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/ LA - ru ID - VTGU_2024_89_a1 ER -
M. S. Bukhtyak. Pseudo-riemannian metrics on a variety of applied covectors. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 17-31. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/