Pseudo-riemannian metrics on a variety of applied covectors
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the three-dimensional affine space $A_3$, a six-dimensional point-vector space $E_6$ is constructed, where its point is an ordered pair consisting of a point from $A_3$ and a covector, and its vector is an ordered pair consisting of a vector and a covector. There is a pseudo-Euclidean metrics of signature in $E_6$ $(3,3)$. The problem of finding all affine semi-invariant pseudo-Riemannian metrics in the tangent fibration of a given space is solved. It is shown that finding semi-invariant metrics leads to finding invariant metrics, and there is a one-parameter family of such metrics (including the pseudo-Euclidean metrics as the trivial case). For the given family of metrics, the Levi-Civita connection is constructed, and a description of geodesic lines of this connection in the general case is given.
Mots-clés : affine space
Keywords: point-vector space, covector, pseudo-Euclidean metrics, pseudo-Riemannian metrics, Levi-Civita connection, geodesic lines.
@article{VTGU_2024_89_a1,
     author = {M. S. Bukhtyak},
     title = {Pseudo-riemannian metrics on a variety of applied covectors},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--31},
     year = {2024},
     number = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
TI  - Pseudo-riemannian metrics on a variety of applied covectors
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 17
EP  - 31
IS  - 89
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/
LA  - ru
ID  - VTGU_2024_89_a1
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%T Pseudo-riemannian metrics on a variety of applied covectors
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 17-31
%N 89
%U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/
%G ru
%F VTGU_2024_89_a1
M. S. Bukhtyak. Pseudo-riemannian metrics on a variety of applied covectors. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 17-31. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a1/

[1] Klein F., “Sravnitelnoe obozrenie noveishikh geometricheskikh issledovanii ("Erlangenskaya programma")”, Ob osnovaniyakh geometrii, sb. klassicheskikh rabot po geometrii Lobachevskogo i razvitiyu ee idei: k stoletiyu so dnya smerti Lobachevskogo, red. i vstup. st. A.P. Nordena, Gostekhizdat, M., 1956, 399–434

[2] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, GITTL, M., 1947, 404 pp.

[3] Dedonne Zh., Kerrol Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974, 280 pp.

[4] Mikhailichenko G.G., “Prosteishie polimetricheskie geometrii”, Doklady RAN, 348:1 (1996), 22–24

[5] Scherbakov R.N., Kurs affinnoi i proektivnoi differentsialnoi geometrii, Izd-vo TGU, Tomsk, 1960

[6] Finikov S.P., Metod vneshnikh form Kartana, GITTL, M.-L., 1948, 432 pp.

[7] Akivis M.A., Mnogomernaya differentsialnaya geometriya, Kalinin. gos. un-t, Kalinin, 1977, 83 pp.

[8] Finikov S.P., Teoriya kongruentsii, GITTL, M., 1950, 528 pp.

[9] Aleksandrov P.S., Lektsii po analiticheskoi geometrii, Nauka, M., 1968, 912 pp.

[10] Bukhtyak M.S., “Estestvennaya svyaznost na giperpoverkhnosti prostranstva B$_6$”, Geometricheskii sbornik, 31, Izd-vo Tom. un-ta, Tomsk, 1990, 51–57

[11] Bukhtyak M.S., “Interpretatsiya nul-par trekhmernogo tsentroaffinnogo prostranstva”, Issledovaniya po matematicheskomu analizu i algebre, 3, Tom. gos. un-t, Tomsk, 2001, 39–45

[12] Bukhtyak M.S., “Zamechatelnye svyaznosti na chetyrekhparametricheskom vektornom pole”, Geometricheskii sbornik, 29, Izd-vo Tom. un-ta, Tomsk, 1988, 84–90

[13] Skhouten I.A., Stroik D.Dzh., Vvedenie v novye metoda: differentsialnoi geometrii, v. 1, GONTI, M.-L., 1939, 181 pp.

[14] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp.

[15] Badyaeva Z.P., Bukhtyak M.S., “Poluinvariantnye polinoma: vtorogo poryadka na mnogoobrazii luchei prostranstva $A^3$”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 1 (21), 5–12

[16] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981, 344 pp.

[17] Norden A.P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp.

[18] Krivoshapko S.N., Ivanov V.N., Khalabi S.M., Analiticheskie poverkhnosti: materialy po geometrii 500 poverkhnostei i informatsiya k raschetu na prochnost tonkikh obolochek, Nauka, M., 2006, 544 pp.