Mots-clés : a priori estimation
@article{VTGU_2024_89_a0,
author = {O. L. Boziev},
title = {A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--16},
year = {2024},
number = {89},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_89_a0/}
}
TY - JOUR AU - O. L. Boziev TI - A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 5 EP - 16 IS - 89 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_89_a0/ LA - ru ID - VTGU_2024_89_a0 ER -
%0 Journal Article %A O. L. Boziev %T A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 5-16 %N 89 %U http://geodesic.mathdoc.fr/item/VTGU_2024_89_a0/ %G ru %F VTGU_2024_89_a0
O. L. Boziev. A priori estimates for derivative solutions of one-dimensional inhomogeneous wave equations with an integral load in the main part. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 89 (2024), pp. 5-16. http://geodesic.mathdoc.fr/item/VTGU_2024_89_a0/
[1] Bernshtein S.N., “Ob odnom klasse funktsionalnykh uravnenii s chastnymi proizvodnymi”, Izvestiya AN SSSR. Ser. matematicheskaya, 4:1 (1940), 17–26
[2] Woinowsky-Krieger S., “The effect of axial forces on the vibrations of hinged bars”, J. Appl. Mech., 17 (1950), 35–36
[3] Dickey R.W., “Infinite systems of nonlinear oscillation equations related to the string”, Proc. Amer. Math. Soc., 23 (1969), 459–468
[4] Crippa H.R., “On local solutions of some mildly degenerate Hyperbolic equations”, Nonlinear Analysis: Theory, Methods Applications, 21:8 (1993), 565–574
[5] Frota C.L., Medeiros L.A., Vicente A., “Wave equation in domains with nonlocally reacting boundary”, Differential and Integral Equations, 17 (2011), 1001–1020
[6] Pokhozhaev S.I., “Ob odnom klasse kvazilineinykh giperbolicheskikh uravnenii”, Mate maticheskii sbornik, 96(138):1 (1975), 152–166
[7] Pokhozhaev S.I., “Ob odnom kvazilineinom giperbolicheskom uravnenii Kirkhgofa”, Differentsialnye uravneniya, 21:1 (1985), 101–108
[8] Nishihara K., “Exponential decay of solutions of some quasilinear hyperbolic equations with linear damping”, Nonlinear Analysis: Theory, Methods Applications, 8:6 (1984), 623–636
[9] Ngoc L.T.P., Long N.T., “Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions”, Acta Appl Math., 112 (2010), 137–169
[10] Ono K., “Global solvability for mildly degenerate Kirchhoff type dissipative wave equations in Bounded Domains”, J. Math. Tokushima Univ., 55 (2021), 11–18
[11] Boziev O.L., “Priblizhennoe reshenie nagruzhennogo giperbolicheskogo uravneniya s odnorodnymi kraevymi usloviyami”, Vestnik Yuzhnouralskogo gosudarstvennogo universiteta. Ser. Matematika, fizika, mekhanika, 8:2 (2016), 14–18
[12] Boziev O.L., “Reshenie nelineinogo giperbolicheskogo uravneniya priblizhenno-analiticheskim metodom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2018, no. 51, 5–14
[13] Boziev O.L., “O linearizatsii giperbolicheskikh uravnenii s integralnoi nagruzkoi v glavnoi chasti s pomoschyu apriornoi otsenki ikh reshenii”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2022, no. 80, 16–25
[14] Filatov A.N., Sharova L.V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 151 pp.
[15] Boziev O.L., “Apriornye otsenki proizvodnykh reshenii odnomernykh neodnorodnykh uravnenii teploprovodnosti s integralnoi nagruzkoi v glavnoi chasti”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Ser. Matematika, fizika, mekhanika, 15:2 (2023), 5–13