On some features of the spectrum of longitudinal vibrations and sound emission of a rod
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 53-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This study is devoted to the correlation of theoretical models of the impact and post-impact longitudinal vibrations of a rod with the corresponding experimental data. A solution to the problem of longitudinal vibrations of a cylindrical rod is obtained using the Saint-Venant wave model with free ends in the presence of friction. The friction coefficient is determined by a set of multi-frequency damped vibrations of the rod after impact. The amplitude-frequency dependences of the displacements and velocities of the rod ends for free post-shock vibrations are determined and analyzed together with their relationship with the acoustic pressure emitted by the ends at different ratios between the masses of the striker and rod. The shift of the amplitude maximum of acoustic pressure from the frequency of the fundamental tone to the overtone is shown to depend on the parameters determining the oscillation period and the mass ratio of the striker and rod. This is inconsistent with the longitudinal vibration spectrum of the rod, whose maximum corresponds to the frequency of the fundamental tone at any mass ratio of the striking pair. The obtained data are experimentally validated.
Keywords: longitudinal impact, contact force, acoustic pressure.
@article{VTGU_2024_88_a4,
     author = {A. A. Azarov and A. L. Popov and D. A. Chelyubeev},
     title = {On some features of the spectrum of longitudinal vibrations and sound emission of a rod},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {53--65},
     year = {2024},
     number = {88},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a4/}
}
TY  - JOUR
AU  - A. A. Azarov
AU  - A. L. Popov
AU  - D. A. Chelyubeev
TI  - On some features of the spectrum of longitudinal vibrations and sound emission of a rod
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 53
EP  - 65
IS  - 88
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a4/
LA  - ru
ID  - VTGU_2024_88_a4
ER  - 
%0 Journal Article
%A A. A. Azarov
%A A. L. Popov
%A D. A. Chelyubeev
%T On some features of the spectrum of longitudinal vibrations and sound emission of a rod
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 53-65
%N 88
%U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a4/
%G ru
%F VTGU_2024_88_a4
A. A. Azarov; A. L. Popov; D. A. Chelyubeev. On some features of the spectrum of longitudinal vibrations and sound emission of a rod. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 53-65. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a4/

[1] Strutt J.V. (Lord Rayleigh), The Theory of Sound, Macmillan and Company, London, 1926

[2] Love A., Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927

[3] Timoshenko S.P., Vibration Problems in Engineering, Van Nostrand Company, Toronto – New York – London, 1955

[4] Saint-Venant A., “Sur le choc longitudinal de deux barres 'elastiques”, J. de Math. (Liouville). Ser. 2, 12 (1867), 237–376

[5] Hertz H., “Uber die Beruhrung fester elastischer Korper”, Za. f. Math. (Crelle), 92 (1881), 156–171

[6] Sears J.E., “On the longitudinal impact of metal rods with rounded ends”, Proc. Cambridge Phil. Soc., 14 (1908), 49–106

[7] Biderman V.L., Theory of impact, Mashgiz, M., 1952

[8] Goldsmith W., Impact: The Theory and Physical Behaviour of Colliding Solids, Arnold, London, 1960

[9] Al-Mousawi M.M., “On experimental studies of longitudinal and flexural wave propagations: An annotated bibliography”, Applied Mechanics Reviews, 39 (1986), 853–864 | DOI

[10] Hu B., Schiehlen W., Eberhard P., “Comparison of Analytical and Experimental Results for Longitudinal Impacts on Elastic Rods”, Journal of Vibration and Control, 9 (2003), 157174

[11] Morozov N.F., Belyaev A.K., Tovstik P.E., “Rod vibrations caused by axial impact”, Doklady akademii nauk – Doklady Physics, 480:2 (2018), 164–169 | DOI

[12] Belyaev A.K., Tovstik T.P., Tovstik P.E., “Thin rod under longitudinal dynamic compression”, Mechanics of Solids, 52:4 (2017), 364–377 | DOI

[13] Akulenko L.D., Nesterov S.V., “Mass defect influence on the longitudinal vibration frequencies and mode shapes of a beam”, Mechanics of Solids, 49:1 (2014), 104–111 | DOI

[14] Shifrin E.I., Popov A.L., Lebedev I.M., Chelyubeev D.A., Kozintsev V.M., “Numerical and experimental verification of a method of identification of localized damages in a rod by natural frequencies of longitudinal vibration”, Acta Mechanica, 232:5 (2021), 1797–1808 | DOI

[15] Skobel'tsyn S.A., Peshkov N.Yu., “Scaterring of sound by an inhomo geneous elastic elliptic cylinder in an acoustic half-space”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki – Izvestiya Tula State University. Technical Sciences, 2018, no. 7, 183–200

[16] Tolokonnikov L.A., Larin N.V., “Scattering by a cylinder with an inhomogeneous coating of sound waves emitted by a linear source in a plane waveguide”, Math. Models Comput. Simul., 14:2 (2022), 250–260 | DOI

[17] Peshkov N.Yu., Skobel'tsyn S.A., “Sound scaterring by an elastic cylinder with a piecewise inhomogeneous coating”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki – Izvestiya Tula State University. Technical Sciences, 2020, no. 10, 214–226

[18] Stoychev V.B., Mozhaev I.V., “Prediction of parameters of the pile-tube driving by pneumatic impact machines”, Izvestiya vuzov stroitel'stvo – News of Higher Educational Institutions. Construction, 2004, no. 3, 81–85

[19] Zegzhda S. A., 1997 h tel [Collision of elastic bodies]. Saint Petersburg: Saint Petersburg University Press.

[20] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series. Elementary Functions, v. 1, Gordon and Breach, New York, 1986

[21] Piskunov N., Differential and Integral Calculus, v. 2, Mir, M., 1987

[22] Rschevkin S.N., A Course of Lectures on the Theory of Sound, Pergamon Press, Oxford, 1963