Some properties of topological hedgehogs
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 37-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The topological spaces called Euclidean hedgehogs are considered. These are subspaces of the Euclidean spaces $\mathbf{R^n}$ with the following property: together with each of their points, they contain the entire segment connecting the given point with the point of origin. It is proved that for all $n\geqslant 2$ there exist pairwise non-homeomorphic Euclidean hedgehogs in $\mathbf{R^n}$. It is also proved that for every countable Euclidean hedgehog there exists a flat hedgehog homeomorphic to it. We also consider two topological spaces: the quasimetric hedgehog and the quotient hedgehog, which have the following cardinal and hereditary invariants: weight, character, density, spread, extent, cellularity, tightness, number of open sets, and Lindelof number. Finally, sequential hedgehogs are considered that are topologically embedded in function spaces. Criteria are given for the topological embedding of sequential hedgehogs in the space of continuous functions and in the space of Baire functions.
Keywords: Euclidean hedgehog, quasi-metric, factor topology, Sorgenfrey line, metric hedgehog, sequential hedgehog, space of continuous functions, space of Baire functions, topological embedding.
Mots-clés : cardinal invariants
@article{VTGU_2024_88_a3,
     author = {D. Yu. Lyakhovets and A. V. Osipov},
     title = {Some properties of topological hedgehogs},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {37--52},
     year = {2024},
     number = {88},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a3/}
}
TY  - JOUR
AU  - D. Yu. Lyakhovets
AU  - A. V. Osipov
TI  - Some properties of topological hedgehogs
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 37
EP  - 52
IS  - 88
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a3/
LA  - ru
ID  - VTGU_2024_88_a3
ER  - 
%0 Journal Article
%A D. Yu. Lyakhovets
%A A. V. Osipov
%T Some properties of topological hedgehogs
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 37-52
%N 88
%U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a3/
%G ru
%F VTGU_2024_88_a3
D. Yu. Lyakhovets; A. V. Osipov. Some properties of topological hedgehogs. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 37-52. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a3/

[1] Engelking R., General Topology, Heldermann, Berlin, 1989

[2] K. Kunen, J.E. Vaughan (eds.), Handbook of set-theoretic topology, handbook, Elsevier Science Publishers, Amsterdam–New York–Oxford, 1984, 1273 pp.

[3] Arkhangelsky A.V., Ponomarev V.I., Fundamentals of general topology in problems and exercises, Nauka, M., 1974

[4] Hurewicz W., “Uber eine verallgemeinerung des Borelschen Theorems”, Mathematische Zeitschrift, 24 (1925), 401–421 | DOI

[5] Arhangel'skii A.V., “Hurewicz spaces, analytic sets and fan tightness of function spaces”, Sov. Math. Dokl., 33 (1986), 396–399

[6] Arhangel'skii A.V., “Projective $\sigma$-compactness, $\omega_1$-caliber, and $C_p$-spaces”, Topology and its Applications, 104 (2000), 13–26 | DOI

[7] Sakai M., “The projective Menger property and an embedding of $S_\omega$ into function spaces”, Topology and its Applications, 220 (2017), 118–130 | DOI

[8] Osipov A. V., “Projective versions of the properties in the Scheepers Diagram”, Topology and its Applications, 278 (2020), 107232 | DOI

[9] Bonanzinga M., Cammaroto F., Matveev M., “Projective versions of selection principles”, Topology and its Applications, 157 (2010), 874–893 | DOI

[10] Scheepers M., Tsaban B., “The combinatorics of Borel covers”, Topology and its Applications, 121 (2002), 357–382 | DOI

[11] Osipov A. V., “Classification of selectors for sequences of dense sets of Baire functions”, Topology and its Applications, 258 (2019), 251–267 | DOI

[12] Just W., Miller A.W., Scheepers M., Szeptycki P.J., “The combinatorics of open covers II”, Topology and its Applications, 73 (1996), 241–266 | DOI