Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 26-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $N\Phi(K)$ be a niltriangular subalgebra of the Chevalley algebra of an associative-commutative ring $K$ with identity, associated with the root system $\Phi$ (the basis $N\Phi(K)$ consists of all elements $e_r\in\Phi^+$ of the Chevalley basis). We describe automorphisms of a niltriangular Lie ring of type $G_2$ over a field $K$ under the constraint $2K=0$. To study automorphisms, the upper and lower central series described in this paper are essentially used.
Keywords:
Chevalley algebra, ring, hypercentral automorphism.
Mots-clés : nil-triangular subalgebra, automorphism
Mots-clés : nil-triangular subalgebra, automorphism
@article{VTGU_2024_88_a2,
author = {A. V. Kazakova},
title = {Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {26--36},
publisher = {mathdoc},
number = {88},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/}
}
TY - JOUR AU - A. V. Kazakova TI - Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 26 EP - 36 IS - 88 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/ LA - ru ID - VTGU_2024_88_a2 ER -
%0 Journal Article %A A. V. Kazakova %T Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 26-36 %N 88 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/ %G ru %F VTGU_2024_88_a2
A. V. Kazakova. Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 26-36. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/