Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 26-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N\Phi(K)$ be a niltriangular subalgebra of the Chevalley algebra of an associative-commutative ring $K$ with identity, associated with the root system $\Phi$ (the basis $N\Phi(K)$ consists of all elements $e_r\in\Phi^+$ of the Chevalley basis). We describe automorphisms of a niltriangular Lie ring of type $G_2$ over a field $K$ under the constraint $2K=0$. To study automorphisms, the upper and lower central series described in this paper are essentially used.
Keywords: Chevalley algebra, ring, hypercentral automorphism.
Mots-clés : nil-triangular subalgebra, automorphism
@article{VTGU_2024_88_a2,
     author = {A. V. Kazakova},
     title = {Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {26--36},
     publisher = {mathdoc},
     number = {88},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/}
}
TY  - JOUR
AU  - A. V. Kazakova
TI  - Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 26
EP  - 36
IS  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/
LA  - ru
ID  - VTGU_2024_88_a2
ER  - 
%0 Journal Article
%A A. V. Kazakova
%T Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 26-36
%N 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/
%G ru
%F VTGU_2024_88_a2
A. V. Kazakova. Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic~$2$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 26-36. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a2/