Modeling of hydrodynamics, heat transfer, and averaging of granular media in a pneumatic circulation apparatus
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 164-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical modeling of hydrodynamics, heat transfer, and averaging of a highly concentrated granular medium in the working area of a vertical pneumatic circulation apparatus is performed. The hydrodynamics of a dense layer of the granular medium is described by a non-Newtonian model with partial slip conditions on solid walls. Such a representation of the granular medium dynamics allows one to approve theoretical calculations with available experimental data for a steady flow in a flat channel. The numerical applicability of the partial slip condition for a non-Newtonian fluid is confirmed by the analytical dependences obtained by the authors for a steady flow in a circular tube and a flat channel, which are transformed into the known analytical formulas under no-slip conditions for a non-Newtonian medium. On the basis of the proposed model, the heat exchange intensity is analyzed when setting the constant heat flux density or the constant temperature on the annular shelves in the apparatus. The intensity of the granular mixture averaging in the bunker with the introduction of additional annular shelves is studied, and the efficiency of granular mixture mixing during rotation is considered. A method for analyzing the mixing of a granular medium in dynamics in each local area of the apparatus is proposed, which is based on the determination of the inhomogeneity coefficient. The results of this study can be used when developing powder technology devices for drying, mixing, dosing, and transport.
Keywords: non-Newtonian medium, heat, velocity, mixing, mathematical model.
Mots-clés : granules
@article{VTGU_2024_88_a12,
     author = {A. V. Shvab and S. V. Musin},
     title = {Modeling of hydrodynamics, heat transfer, and averaging of granular media in a pneumatic circulation apparatus},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {164--178},
     year = {2024},
     number = {88},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a12/}
}
TY  - JOUR
AU  - A. V. Shvab
AU  - S. V. Musin
TI  - Modeling of hydrodynamics, heat transfer, and averaging of granular media in a pneumatic circulation apparatus
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 164
EP  - 178
IS  - 88
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a12/
LA  - ru
ID  - VTGU_2024_88_a12
ER  - 
%0 Journal Article
%A A. V. Shvab
%A S. V. Musin
%T Modeling of hydrodynamics, heat transfer, and averaging of granular media in a pneumatic circulation apparatus
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 164-178
%N 88
%U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a12/
%G ru
%F VTGU_2024_88_a12
A. V. Shvab; S. V. Musin. Modeling of hydrodynamics, heat transfer, and averaging of granular media in a pneumatic circulation apparatus. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 164-178. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a12/

[1] Kasatkin A.G., Basic processes and apparatuses of chemical technology, Khimiya, M., 2004

[2] Kafarov V.V., Dorokhov I.N., System analysis of chemical technology processes, Nauka, M., 1976

[3] Mushtaev V.I., Ul'yanov V.M., Drying of dispersed materials, Khimiya, M., 1988

[4] Makarov Yu.I., Devices for mixing bulk materials, Mashinostroenie, M., 1973

[5] Mathur K., Epstein N., Spouted Beds, Academic Press, New York, 1974

[6] Roslyak A.T., Biryukov Yu.A., Pachin V.N., Pneumatic methods and powder technology devices, Izdatel'stvo TGU, Tomsk, 1990

[7] Shvab V.A. Biryukov Yu.A., Bogdanov L.N., Pneumatic mixer, The copyright certificate of the USSR 770520, 1980

[8] Shirko I.V., Mechanics of granular media. Theory of fast motions, Mir, M., 1985

[9] Shvab A.V., Martsenko A.A., “The dynamics of a dense layer of granular medium in the circulating pneumatic apparatus”, Vestnik Tomskogo gosudarstvennogo uni versiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 4, 115–122 | DOI

[10] Nedderman R., Davis S., Horton D., “Flow of granular materials around obstacles”, Mechanics of granular media. Theory of fast motions, Mir, M., 1985, 228–241

[11] Geniev G.A., Issues of the dynamics of loose media, Gosstroyizdat, M., 1958

[12] Savage S.B., “Gravity flow of cohesionless granular materials in chutes and channels”, J. Fluid Mech., 92:1 (1979), 53–96 | DOI

[13] Shvab A.V., Martsenko M.S., Ryzhikh Yu.N., “Modeling of hydrodynamics and the averaging process of a highly concentrated granular medium in powder technology apparatuses”, Journal of Engineering Physics and Thermophysics, 84 (2011), 730–735 | DOI

[14] Sokolovskiy V.V., Statics of loose media, Fizmatgiz, M., 1960

[15] Shul'man Z.P., Convective heat and mass transfer of rheologically complex liquids, Energiya, M., 1975

[16] Peire R., Taylor T.D., Computational Methods for Fluid Flow, Springer Verlag, New York, 1983

[17] Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980

[18] Petukhov B.S., Heat transfer and resistance during the laminar fluid flow in pipes, Energiya, M., 1967

[19] Byrd R., Stewart V., Lightfoot E., Transfer phenomena, Khimiya, M., 1974

[20] Gorbis Z.R., Heat transfer and hydromechanics of dispersed through flows, Energiya, M., 1970