@article{VTGU_2024_88_a11,
author = {O. N. Shablovskiy},
title = {A discontinuous conically symmetric flow of an ideal incompressible fluid},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {149--163},
year = {2024},
number = {88},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a11/}
}
TY - JOUR AU - O. N. Shablovskiy TI - A discontinuous conically symmetric flow of an ideal incompressible fluid JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 149 EP - 163 IS - 88 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a11/ LA - ru ID - VTGU_2024_88_a11 ER -
O. N. Shablovskiy. A discontinuous conically symmetric flow of an ideal incompressible fluid. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 149-163. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a11/
[1] Sedov L.I., Continuum mechanics, v. 1, Nauka, M., 1973
[2] Golovkin M.A., Golovkin V.A., Kalyavkin V.M., Issues of vortex hydromechanics], Fizmatlit, M., 2009
[3] Khatuntseva O.N., “Analysis of the reasons for an aerodynamic hysteresis in flight tests of the Soyuz reentry capsule at the hypersonic segment of its descent”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 544–552 | DOI
[4] Guvernyuk S.V., Maksimov F.A., “Supersonic flow past a flat lattice of cylindrical rods”, Computational Mathematics and Mathematical Physics, 56 (2016), 1012–1019 | DOI | DOI
[5] Volkov V.F., Tarnavskiy G.A., “Symmetry breaking and hystere sis of stationary and quasi-stationary solutions of the Euler and Navier-Stokes equations”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki – Computational Mathematics and Mathematical Physics, 41:11 (2001), 1742–1750
[6] Shtern V., Hussain F., “Collapse, symmetry breaking, and hysteresis in swirling flows”, Annual Review of Fluid Mechanics, 31 (1999), 537–566 | DOI
[7] Ogus G., Baelmans M., Vanierschot M., “On the flow structures and hysteresis of laminar swirling jets”, Physics of Fluids, 28 (2016), 123604-1–123604-16 | DOI
[8] Bogomolov B.A., “Motion of an ideal fluid of constant density in the presence of sinks”, Mekhanika zhidkosti i gaza – Fluid Dynamics, 1976, no. 4, 21–27
[9] Goldshtik M.A., Shtern V.N., Yavorskiy N.I., Viscous flows with paradoxical properties, Nauka, Novosibirsk, 1989
[10] Pukhnachev V.V., “Problem of a point source”, Journal of Applied Mechanics and Technical Physics, 60 (2019), 200–210 | DOI
[11] Bardos C., Titi E.S., “Euler equations for incompressible ideal fluids”, Russian Mathematical Surveys, 62:3 (2007), 409–451 | DOI | DOI
[12] Shablovskiy O.N., “Spherical flow of an ideal fluid in a spatially inhomogeneous force field”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and mechanics, 2020, no. 64, 146–155 | DOI