On a mathematical model of the interaction of a high-temperature plasma flow with a wood surface
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 138-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study, the processes of thermal decomposition of wood during its treatment with a plasma flow are considered. To develop a mathematical model of these processes, a differential thermogravimetric analysis of the heating of larch samples in an argon atmosphere at a rate of 10-20 degrees/min is carried out. Based on the results obtained, a mathematical model of thermal decomposition is proposed, including four stages. The wood during heating is represented by a mixture of six components. At each stage, the kinetic parameters of the reactions are determined by processing measurements at a heating rate of 20 degrees/min. The equations of chemical kinetics describing changes in the mass of wood components are numerically solved using the finite-difference implicit Euler method and the obtained reaction parameters. The numerical solution to the equations of chemical kinetics with these parameters shows satisfactory agreement with the data from the corresponding experiment. The calculation performed at a heating rate of 10 degrees/min with the same kinetic parameters also shows satisfactory agreement with the measurements. Thus, the obtained reaction parameters do not depend on the heating rate in the considered range. The proposed model can be used in the mathematical description of changes in the structure and thermal state of wood samples exposed to high-temperature plasma flow treatment.
Keywords: physical and chemical mechanics, heat treatment of wood, pyrolysis, kinetics of thermal decomposition, mathematical modeling.
@article{VTGU_2024_88_a10,
     author = {V. A. Cheremnykh and G. G. Volokitin and V. D. Goldin and S. A. Basalaev and A. A. Klopotov and N. A. Tsvetkov},
     title = {On a mathematical model of the interaction of a high-temperature plasma flow with a wood surface},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {138--148},
     year = {2024},
     number = {88},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a10/}
}
TY  - JOUR
AU  - V. A. Cheremnykh
AU  - G. G. Volokitin
AU  - V. D. Goldin
AU  - S. A. Basalaev
AU  - A. A. Klopotov
AU  - N. A. Tsvetkov
TI  - On a mathematical model of the interaction of a high-temperature plasma flow with a wood surface
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 138
EP  - 148
IS  - 88
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a10/
LA  - ru
ID  - VTGU_2024_88_a10
ER  - 
%0 Journal Article
%A V. A. Cheremnykh
%A G. G. Volokitin
%A V. D. Goldin
%A S. A. Basalaev
%A A. A. Klopotov
%A N. A. Tsvetkov
%T On a mathematical model of the interaction of a high-temperature plasma flow with a wood surface
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 138-148
%N 88
%U http://geodesic.mathdoc.fr/item/VTGU_2024_88_a10/
%G ru
%F VTGU_2024_88_a10
V. A. Cheremnykh; G. G. Volokitin; V. D. Goldin; S. A. Basalaev; A. A. Klopotov; N. A. Tsvetkov. On a mathematical model of the interaction of a high-temperature plasma flow with a wood surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 138-148. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a10/

[1] Volokitin G.G., Skripnikova N.K., Volokitin O.G., Shekhovtsov V.V., Sinitsyn V.A., Vashchenko S.P., Kuz'min V.I., “Plasma treatment of wood”, Thermophysics and Aeromechanics, 23:1 (97) (2016), 125–130 | DOI

[2] Yankina A.S., “Features of wood brushing”, Rostovskiy nauchnyy zhurnal, 2019, no. 2, 287–294

[3] Duk D.V., Martynovskaya S.N., “Prospects for the use of wood firing in producing of small architectural forms”, Tekhnologii i oborudovanie sadovo-parkovogo i landshaftnogo stroitel'stva, Sbornik statey X Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem (Krasnoyarsk), FGBOU VSH “Sibirskiy gosudarstvenyy universitet nauki i tekhnologiy imeni akademika M.F. Reshetnyova”, Krasnoyarsk, 2023, 351–355

[4] Ugolev B.N., Wood science and forest com modity science, Moscow State Forest University, M., 2007

[5] Fizicheskiy entsiklopedicheskiy slovar', Physical encyclopedic dictionary, v. 5, Sovetskaya Entsiklopediya, M., 1966, 576 pp.

[6] Kansa E.J., Perlee H.E., Chaiken R.F., “Mathematical model of wood pyrolysis including internal forced convection”, Combustion and Flame, 29 (1977), 311–324 | DOI

[7] Grishin A.M., Mathematical modeling of forest fires and new ways of suppression, Nauka, Sibirskoe otdelenie, Novosibirsk, 1992

[8] Grishin A.M., “General physical and mathematical model of the ignition and burning of wood”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2010, no. 2, 60–70