@article{VTGU_2024_88_a0,
author = {Kh. M. Gamzaev},
title = {Numerical method for restoring the initial condition for the wave equation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--13},
year = {2024},
number = {88},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_88_a0/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - Numerical method for restoring the initial condition for the wave equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 5 EP - 13 IS - 88 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_88_a0/ LA - en ID - VTGU_2024_88_a0 ER -
Kh. M. Gamzaev. Numerical method for restoring the initial condition for the wave equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 88 (2024), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2024_88_a0/
[1] Kabanikhin S.I., Inverse and Ill-Posed Problems, Walter de Gruyter, Berlin, 2011
[2] Isakov V., Inverse Problems for Partial Differential Equations, Springer, Berlin, 2017
[3] Alifanov O.M., Artioukhine E.A., Rumyantsev S.V., Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, Danbury, 1995
[4] Prilepko A.I., Orlovsky D.G., Vasin I.A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000
[5] Hasanov A.H., Romanov V.G., Introduction to Inverse Problems for Differential Equations, Springer, 2021
[6] Borukhov V.T., Zayats G.M., “Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation”, International Journal of Heat and Mass Transfer, 91 (2015), 1106–1113 | DOI
[7] Vabishchevich P.N., “Computational identification of the time dependence of the righthand side of a hyperbolic equation”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1475–1483 | DOI
[8] Denisov A.M., “Problems of determining the unknown source in parabolic and hyperbolic equations”, Computational Mathematics and Mathematical Physics, 55:5 (2015), 829–833 | DOI
[9] Ismailov M.I., Tekin, I., “Inverse coefficient problems for a first order hyperbolic system”, Applied Numerical Mathematics, 106 (2016), 98–115 | DOI
[10] Liao W., “A computational method to estimate the unknown coefficient in a wave equation using boundary measurements”, Inverse Problems in Science and Engineering, 19:6 (2011), 855–877 | DOI
[11] Jiang D., Liu Y., Yamamoto M., “Inverse source problem for the hyperbolic equation with a time-dependent principal part”, Journal of Differential Equations, 262 (2017), 653–681 | DOI
[12] Safiullova R.R., “Inverse problem for the second order hyperbolic equation with an unknown time-dependent coefficient”, Vestnik Yuzho-Ural'skogo Gosudarstvennogo Universiteta. Seriya Matematicheskoye modelirovaniye i programmirovaniye - Bulletin of the South Ural State University. Mathematical Modelling, Programming Computer Software, 6:4 (2013), 73–86
[13] Kabanikhin S.I., Bektemesov M.A., Nurseitov D.B., Alimova A.N., “Solving the Dirichlet problem for a two-dimensional wave equation by the Landweber iteration method”, Vestnik Kazakhskogo natsional'nogo universiteta Seriya Matematika, Mekhanika, Informatika. - Journal of Mathematics, Mechanics and Computer Science, 69:2 (2011), 102–110
[14] Kabanikhin S.I., Bektemesov M.A., Nurseitov D.B., Krivorotko O.I., Alimova A.N., “An optimization method in the Dirichlet problem for the wave equation”, Journal of Inverse and Ill-Posed Problems, 20:2 (2012), 193–211 | DOI
[15] Kabanikhin S.I., Krivorotko O.I., “A numerical method for solving the Dirichlet problem for the wave equation”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 187–198 | DOI
[16] Vasilev V.I., Kardashevsky A.M., Popov V.V., “Iterative method for solving the Dirichlet problem and its modifications”, Matematicheskiye zametki SVFU, 24:3 (2017), 38–51
[17] Samarskii A.A., Vabishchevich P.N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2008
[18] Gamzaev Kh.M., Huseynzade S.O., Gasimov G.A., “Numerical method to solve identification problem for the lower coefficient and the source in the convection-reaction equation”, Cybernetics and Systems Analysis, 54:6 (2018), 971–976 | DOI