Thermodynamic modeling of high-energy thermite systems based on calcium iodate
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 106-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the results of a thermodynamic study of the component content influence and their physical and chemical properties on the regulation of the main energy characteristics and combustion product characteristics of thermite systems based on calcium iodate containing Al, B and Ti. The adiabatic combustion temperature, enthalpy of combustion products, specific impulse, exhaust velocity of combustion products, mass fraction of condensed phases, content of gaseous and condensed combustion products are determined. The influence of the metal oxide/metal fuel content in the thermite system composition on the main energy characteristics was assessed. Based on a comparison of the calculation results of the thermite systems thermodynamic and thermophysical characteristics, it seems possible to divide the studied thermite systems into 3 functional groups according to their application. Taking into account the ratio of components, these can be: 1) thermite systems for welding processes and 2) thermite systems for perforating, cutting metal structures (CaI2O6/Al and CaI2O6/Ti); 3) thermite systems as a component of energy compositions capable to inactivate harmful aerosol spores and bacteria (CaI2O6/B), since due to the low combustion temperature of CaI2O6/B, a longer burning time of such systems leads to a gradual release of iodine.
Keywords: thermite system, adiabatic combustion temperature, specific impulse, condensed combustion products, thermodynamic calculation.
@article{VTGU_2024_87_a8,
     author = {M. O. Enkov and T. I. Gorbenko and M. V. Gorbenko},
     title = {Thermodynamic modeling of high-energy thermite systems based on calcium iodate},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {106--119},
     year = {2024},
     number = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a8/}
}
TY  - JOUR
AU  - M. O. Enkov
AU  - T. I. Gorbenko
AU  - M. V. Gorbenko
TI  - Thermodynamic modeling of high-energy thermite systems based on calcium iodate
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 106
EP  - 119
IS  - 87
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a8/
LA  - ru
ID  - VTGU_2024_87_a8
ER  - 
%0 Journal Article
%A M. O. Enkov
%A T. I. Gorbenko
%A M. V. Gorbenko
%T Thermodynamic modeling of high-energy thermite systems based on calcium iodate
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 106-119
%N 87
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a8/
%G ru
%F VTGU_2024_87_a8
M. O. Enkov; T. I. Gorbenko; M. V. Gorbenko. Thermodynamic modeling of high-energy thermite systems based on calcium iodate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 106-119. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a8/

[1] Belov G.V., Trusov B.G., Termodinamicheskoe modelirovanie khimicheski reagiruyuschikh sistem, ucheb. posobie po kursu “Termodinamika”, MGTU im. N.E. Baumana, fak. “Energomashinostroenie”, Izd-vo MGTU im. N.E. Baumana, M., 2013 (1 CD-ROM)

[2] Monogarov K.A., Meerov D.B., Frolov Yu.V., Pivkina A.N., “Osobennosti goreniya nanorazmernykh termitov v pironagrevatelyakh”, Khimicheskaya fizika, 38:8 (2019), 40–45 | DOI

[3] Enkov M.O., Gorbenko T.I., Gorbenko M.V., “Topliva na osnove termitnykh sistem dlya dvigatelei maloi tyagi”, Reshetnevskie chteniya, materialy XXVI Mezhdunar. nauch.-prakt. konf. (Krasnoyarsk, 9-11 noyabrya, 2022), v. 1, Sib. gos. un-t nauki i tekhnologii im. akad. M.F. Reshetneva, Krasnoyarsk, 2022, 246–248

[4] Imkhovik N.A., Selivanov V.V., Simonov A.K., Sergeeva A.I., Yashin V.B., “Ob issledovaniyakh po razrabotke za rubezhom novykh vysokoplotnykh reaktivnykh materialov (High-Density Reactive Materials) i ikh primeneniyu v boepripasakh povyshennogo moguschestva deistviya”, Vooruzhenie i ekonomika, 2014, no. 1 (26), 53–63

[5] Berner M.K., Zarko V.E., Talavar M.B., “Nanochastitsy energeticheskikh materialov: sposoby polucheniya i svoistva (obzor)”, Fizika goreniya i vzryva, 49:6 (2013), 3–30

[6] Ilin A.P., Tolbanova L.O., Mostovschikov A.V., Sostav termitnogo topliva: opisanie izobreteniya k patentu, Byul. No 14, Federalnaya sluzhba po intellektualnoi sobstvennosti, patentam i tovarnym znakam, 20.05.2011

[7] Alvarez F., Delgado A., Frias J., Rubio M., White Ch., Ashvin K., Shafirovich E., “Combustion of Thermites in Reduced Gravity for Space Applications”, Journal of Thermophysics and Heat Transfer, 27:3 (2013), 576–583 | DOI

[8] Delgado A., Shafirovich E., Session: Lunar Resource Utilization, AIAA 2015-1179 (Published Online: 2 Jan 2015)

[9] Wang S., Liu X., Schoenitz M., Dreizin E.L., “Nanocomposite Thermites with Calcium Iodate Oxidizer”, Propellants, Explosives, Pyrotechnics, 42:3 (2017), 284–292 | DOI

[10] Wang S., Abraham A., Zhong Z., Schoenitz M., Dreizin E.L., “Ignition and combustion of boron-based AlBI2 and MgBI2 composites”, Chemical Engineering Journal, 293 (2016), 112–117 | DOI

[11] Kostin S.V., Barzykin V.V., Nechaev M.A., Lovlya S.A., “Prozhiganie stalnykh trub gazodispersnymi produktami goreniya termita”, Fizika goreniya i vzryva, 36:4 (2000), 79–82

[12] Belov G.V., Termodinamicheskoe modelirovanie: metody, algoritmy, programmy, Nauchnyi Mir, M., 2002, 184 pp.