Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 88-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the regularities of solid-phase sedimentation within a laboratory submerged combustion apparatus are considered. The study is conducted using the methods of computational fluid dynamics. A gas-liquid-solid three-phase flow is simulated. The gas-liquid and liquid-solid interactions are modeled using the Euler-Euler and Euler-Lagrange approaches, respectively. The thermal regime is considered without the vapor phase. The finite volume method is used to solve this problem. As a result, the trajectories of the solid particles are obtained and their correlation with the streamlines of the fluid is analyzed. The proportion of particles that settled down during the experiment is obtained for different numbers of particles. The conclusion is made on the nonlinear growth of the proportion of settled particles and their percentage on the right side. The velocity of the upward fluid flow is found to be higher than the deposition velocity for the entire considered range of solid particle diameters. It is concluded that the organized solid-phase withdrawal from the apparatus can be provided if the solid phase is extracted near the area of solid particle nucleation.
Keywords: submerged combustion apparatus, numerical modeling, gas-liquid-solid three-phase flow
Mots-clés : sedimentation.
@article{VTGU_2024_87_a7,
     author = {V. A. Demin and A. V. Kostyrya},
     title = {Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {88--105},
     year = {2024},
     number = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/}
}
TY  - JOUR
AU  - V. A. Demin
AU  - A. V. Kostyrya
TI  - Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 88
EP  - 105
IS  - 87
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/
LA  - ru
ID  - VTGU_2024_87_a7
ER  - 
%0 Journal Article
%A V. A. Demin
%A A. V. Kostyrya
%T Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 88-105
%N 87
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/
%G ru
%F VTGU_2024_87_a7
V. A. Demin; A. V. Kostyrya. Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 88-105. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/

[1] Demin V.A., Kostyrya A.V., “Dinamika trekhfaznogo potoka gaz-zhidkost-tverdoe v laboratornoi ustanovke pogruzhnogo goreniya”, Matematicheskie metody v tekhnologiyakh i tekhnike, 2022, no. 4, 82–94

[2] Leonov A.A., Chudanov V.V., Aksenova A.E., Metody pryamogo chislennogo modelirovaniya v dvukhfaznykh sredakh, Nauka, M., 2013, 197 pp.

[3] Volkov K.N., Emelyanov V.N., Techeniya gaza s chastitsami, Fizmatlit, M., 2008, 600 pp.

[4] Kolev N.I., Multiphase flow dynamics, Springer-Verlag, Berlin–Heidelberg, 2007, 751 pp. | MR

[5] Peng Li, Xuhui Zhang, Xiaobing Lu, “Three-dimensional Eulerian modeling of gas-liquidsolid flow with gas hydrate dissociation in a vertical pipe”, Chemical Engineering Science, 2019, no. 196, 1456–1465

[6] Yunfeng Liu, Xiliang Sun, Zeneng Sun, Chao Zhang, Jesse Zhu, “Experimental and numerical studies on a bubble-induced inverse gas-liquid-solids fluidized bed”, Advanced Powder Technology, 32 (2021), 4496–4508 | DOI

[7] Mahdavimanesh M., Noghrehabadi A.R., Behbahaninejad M., Ahmadi G., Dehghanian M., “Lagrangian Particle Tracking: Model Development”, Life Science Journal, 2013, no. 10, 34–41

[8] Kovenya V.M., “Algoritmy rasschepleniya v metode konechnykh ob'emov dlya chislennogo resheniya uravnenii Nave-Stoksa”, Marchukovskie nauchnye chteniya – 2017, tr. mezhdunar. nauch. konf., Izd-vo In-ta vychislitelnoi matematiki i matematicheskoi geofiziki SO RAN, Novosibirsk, 2017, 428–433

[9] Ferziger J.H., Peric M., Computational methods for fluid dynamics, Springer, Berlin, 2001, 423 pp. | MR

[10] Kozelkov A.S., Meleshkina D.P., Kurkin A.A., Tarasova N.V., Lashkin S.V., Kurulin V.V., “Polnostyu neyavnyi metod resheniya uravnenii Nave-Stoksa dlya rascheta mnogofaznykh techenii so svobodnoi poverkhnostyu”, Vychislitelnye tekhnologii, 2016, no. 5, 54–76 | Zbl

[11] Korkodinov Ya.A., “Obzor semeistva $k$–$\varepsilon$ modelei dlya modelirovaniya turbulentnosti”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 15:2 (2013), 5–16

[12] Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G., “Development of Turbulence Models for Shear Flows by a Double Expansion technique”, Physics of Fluids A Fluid Dynamics, 1992, no. 4 | MR

[13] Ushakov S.L., Zverev M.I., Inertsionnaya separatsiya pyli, Energiya, M., 1974, 168 pp.

[14] Gelperin N.I., Ainshtein V.G., Kvasha V.B., Osnovy tekhniki psevdoozhizheniya, Khimiya, M., 1967, 664 pp.

[15] Arkhipov V.A., Basalaev S.A., Perfileva K.G., Usanina A.S., “Koeffitsient soprotivleniya tverdoi sfery v neizotermicheskikh usloviyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 71, 13–24