Mots-clés : sedimentation.
@article{VTGU_2024_87_a7,
author = {V. A. Demin and A. V. Kostyrya},
title = {Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {88--105},
year = {2024},
number = {87},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/}
}
TY - JOUR AU - V. A. Demin AU - A. V. Kostyrya TI - Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 88 EP - 105 IS - 87 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/ LA - ru ID - VTGU_2024_87_a7 ER -
%0 Journal Article %A V. A. Demin %A A. V. Kostyrya %T Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 88-105 %N 87 %U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/ %G ru %F VTGU_2024_87_a7
V. A. Demin; A. V. Kostyrya. Numerical modeling of sedimentation of solid particles in a submerged combustion apparatus. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 88-105. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a7/
[1] Demin V.A., Kostyrya A.V., “Dinamika trekhfaznogo potoka gaz-zhidkost-tverdoe v laboratornoi ustanovke pogruzhnogo goreniya”, Matematicheskie metody v tekhnologiyakh i tekhnike, 2022, no. 4, 82–94
[2] Leonov A.A., Chudanov V.V., Aksenova A.E., Metody pryamogo chislennogo modelirovaniya v dvukhfaznykh sredakh, Nauka, M., 2013, 197 pp.
[3] Volkov K.N., Emelyanov V.N., Techeniya gaza s chastitsami, Fizmatlit, M., 2008, 600 pp.
[4] Kolev N.I., Multiphase flow dynamics, Springer-Verlag, Berlin–Heidelberg, 2007, 751 pp. | MR
[5] Peng Li, Xuhui Zhang, Xiaobing Lu, “Three-dimensional Eulerian modeling of gas-liquidsolid flow with gas hydrate dissociation in a vertical pipe”, Chemical Engineering Science, 2019, no. 196, 1456–1465
[6] Yunfeng Liu, Xiliang Sun, Zeneng Sun, Chao Zhang, Jesse Zhu, “Experimental and numerical studies on a bubble-induced inverse gas-liquid-solids fluidized bed”, Advanced Powder Technology, 32 (2021), 4496–4508 | DOI
[7] Mahdavimanesh M., Noghrehabadi A.R., Behbahaninejad M., Ahmadi G., Dehghanian M., “Lagrangian Particle Tracking: Model Development”, Life Science Journal, 2013, no. 10, 34–41
[8] Kovenya V.M., “Algoritmy rasschepleniya v metode konechnykh ob'emov dlya chislennogo resheniya uravnenii Nave-Stoksa”, Marchukovskie nauchnye chteniya – 2017, tr. mezhdunar. nauch. konf., Izd-vo In-ta vychislitelnoi matematiki i matematicheskoi geofiziki SO RAN, Novosibirsk, 2017, 428–433
[9] Ferziger J.H., Peric M., Computational methods for fluid dynamics, Springer, Berlin, 2001, 423 pp. | MR
[10] Kozelkov A.S., Meleshkina D.P., Kurkin A.A., Tarasova N.V., Lashkin S.V., Kurulin V.V., “Polnostyu neyavnyi metod resheniya uravnenii Nave-Stoksa dlya rascheta mnogofaznykh techenii so svobodnoi poverkhnostyu”, Vychislitelnye tekhnologii, 2016, no. 5, 54–76 | Zbl
[11] Korkodinov Ya.A., “Obzor semeistva $k$–$\varepsilon$ modelei dlya modelirovaniya turbulentnosti”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 15:2 (2013), 5–16
[12] Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G., “Development of Turbulence Models for Shear Flows by a Double Expansion technique”, Physics of Fluids A Fluid Dynamics, 1992, no. 4 | MR
[13] Ushakov S.L., Zverev M.I., Inertsionnaya separatsiya pyli, Energiya, M., 1974, 168 pp.
[14] Gelperin N.I., Ainshtein V.G., Kvasha V.B., Osnovy tekhniki psevdoozhizheniya, Khimiya, M., 1967, 664 pp.
[15] Arkhipov V.A., Basalaev S.A., Perfileva K.G., Usanina A.S., “Koeffitsient soprotivleniya tverdoi sfery v neizotermicheskikh usloviyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 71, 13–24