Modeling of elasto-plastic fracture of a compact specimen
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 44-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The strength of a compact specimen under normal fracture (fracture mode I) is studied within the framework of the Neuber-Novozhilov approach. A model of an ideal elasto-plastic material with limiting relative elongation is chosen as the model of the deformable solid. This class of materials includes low-alloy steels that are used in structures operating at temperatures below the cold brittleness threshold. The crack propagation criterion is formulated using the modified Leonov-Panasyuk-Dugdale model, which uses an additional parameter, i.e., the diameter of the plasticity zone (the width of the prefracture zone). In the case of stress field singularity occurring in the vicinity of the crack tip, a two-parameter (coupled) criterion for quasi-brittle fracture is developed for type I cracks in an elastoplastic material. The coupled fracture criterion includes the deformation criterion attributed to the crack tip and the force criterion attributed to the model crack tip. The lengths of the original and model cracks differ by the length of the prefracture zone. Diagrams of the quasi-brittle fracture of the specimen under plane strain and plane stress conditions are constructed. The constitutive equations of the analytical model are analyzed in terms of the characteristic linear dimension of the material structure. Simple formulas applicable to verification calculations of the critical fracture load and pre-fracture zone length for quasi-brittle and quasi-ductile fractures are obtained. The parameters in the presented model of quasi-brittle fracture are analyzed. It is proposed to select the parameters of the model according to the approximation of the uniaxial tension diagram and the critical stress intensity factor.
Keywords: brittle fracture, quasi-brittle fracture, two-parameter fracture criterion, elasto-plastic material, ultimate strain.
Mots-clés : quasi-ductile fracture
@article{VTGU_2024_87_a4,
     author = {N. S. Astapov and V. D. Kurguzov},
     title = {Modeling of elasto-plastic fracture of a compact specimen},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {44--58},
     year = {2024},
     number = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a4/}
}
TY  - JOUR
AU  - N. S. Astapov
AU  - V. D. Kurguzov
TI  - Modeling of elasto-plastic fracture of a compact specimen
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 44
EP  - 58
IS  - 87
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a4/
LA  - ru
ID  - VTGU_2024_87_a4
ER  - 
%0 Journal Article
%A N. S. Astapov
%A V. D. Kurguzov
%T Modeling of elasto-plastic fracture of a compact specimen
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 44-58
%N 87
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a4/
%G ru
%F VTGU_2024_87_a4
N. S. Astapov; V. D. Kurguzov. Modeling of elasto-plastic fracture of a compact specimen. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 44-58. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a4/

[1] Himmiche S., Malki M., Newman Jr. J.C., “Validation of the two-parameter fracture criterion for various crack configurations made of 2014-T6 aluminum alloy using finite-element fracture simulations - Part 1 LT-Orientation”, Engineering Fracture Mechanics, 205 (2019), 253–267 | DOI

[2] Wang Y., Wang G., Tu S., Xuan F., “Validation and application of a two-parameter J-Ad approach for fracture behaviour prediction”, Fatigue Fracture of Engineering Materials Structures, 43:12 (2020), 2998–3011 | DOI

[3] Khamidullin R.M., Fedotova D.V., “Analiz polei napryazhenii v vershine treschiny i parametry soprotivleniya razrusheniyu v usloviyakh gradientnoi plastichnosti”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2021, no. 4, 136–148

[4] Bogacheva V.E., Glagolev V.V., Glagolev L.V., Inchenko O.V., Markin A.A., “Ob odnom podkhode k otsenke prochnosti adgezionnogo sloya v sloistom kmpozite”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2020, no. 2 (64), 63–77 | MR

[5] Suknev S.V., “Nelokalnye i gradientnye kriterii razrusheniya kvazikhrupkikh materialov pri szhatii”, Fizicheskaya mezomekhanika, 21:4 (2018), 22–32

[6] Kornev V.M., “Kriticheskie krivye razrusheniya i effektivnyi diametr struktury khrupkikh i kvazikhrupkikh materialov”, Fizicheskaya mezomekhanika, 16:5 (2013), 25–34

[7] Kornev V.M., Kurguzov V.D., “Sufficient discrete-integral criterion of rupture strength”, Journal of Applied Mechanics and Technical Physics, 42:2 (2001), 328–336 | DOI | Zbl

[8] Kurguzov V.D., Astapov N.S., Astapov I.S., “Fracture model for structured quasibrittle materials”, Journal of Applied Mechanics and Technical Physics, 55:6 (2014), 1055–1065 | DOI | MR

[9] Kovchik S.E., Morozov E.M., Kharakteristiki kratkovremennoi treschinostoikosti mate rialov i metody ikh opredeleniya, sprav. posobie, v 4 t., v. 3, Mekhanika razrusheniya i prochnost materialov, Naukova dumka, Kiev, 1988, 435 pp.

[10] Yu. Murakami (red.), Spravochnik po koeffitsientam intensivnosti napryazhenii, v 2 t., v. 1, Mir, M., 1990, 448 pp.

[11] Matvienko Yu.G., Modeli i kriterii mekhaniki razrusheniya, Fizmatlit, M., 2006, 328 pp.

[12] Gross D., Seelig T., Fracture Mechanics, Springer, Berlin, 2006, 321 pp. | MR | Zbl

[13] Savruk M.P., Koeffitsienty intensivnosti napryazhenii v telakh s treschinami, sprav. posobie, v 4 t., v. 2, Mekhanika razrusheniya i prochnost materialov, Naukova dumka, Kiev, 1988, 619 pp.

[14] Rais Dzh., “Matematicheskie metody v mekhanike razrushenii”, Razrushenie, v 7 t., v. 2, ed. G. Libovits, Mir, M., 1975, 204–335

[15] Pestrikov V.M., Morozov E.M., Mekhanika razrusheniya, Professiya, SPb., 2012, 552 pp.