Minimization of a smooth function on the boundary of an outer generalized spherical segment
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 22-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of minimizing a smooth function on the boundary of the so-called external generalized segment of a sphere, which is constructed in a certain way from a sphere and a convex solid cone with a vertex lying outside the corresponding closed ball. A modification of the gradient projection method is proposed and its convergence to the stationary point of the problem is substantiated.
Keywords: nonconvex optimization, descent method, spherical segment
Mots-clés : gradient projection algorithms.
@article{VTGU_2024_87_a2,
     author = {A. M. Dulliev},
     title = {Minimization of a smooth function on the boundary of an outer generalized spherical segment},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {22--33},
     publisher = {mathdoc},
     number = {87},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/}
}
TY  - JOUR
AU  - A. M. Dulliev
TI  - Minimization of a smooth function on the boundary of an outer generalized spherical segment
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 22
EP  - 33
IS  - 87
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/
LA  - ru
ID  - VTGU_2024_87_a2
ER  - 
%0 Journal Article
%A A. M. Dulliev
%T Minimization of a smooth function on the boundary of an outer generalized spherical segment
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 22-33
%N 87
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/
%G ru
%F VTGU_2024_87_a2
A. M. Dulliev. Minimization of a smooth function on the boundary of an outer generalized spherical segment. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 22-33. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/