Minimization of a smooth function on the boundary of an outer generalized spherical segment
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 22-33
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of minimizing a smooth function on the boundary of the so-called external generalized segment of a sphere, which is constructed in a certain way from a sphere and a convex solid cone with a vertex lying outside the corresponding closed ball. A modification of the gradient projection method is proposed and its convergence to the stationary point of the problem is substantiated.
Keywords:
nonconvex optimization, descent method, spherical segment
Mots-clés : gradient projection algorithms.
Mots-clés : gradient projection algorithms.
@article{VTGU_2024_87_a2,
author = {A. M. Dulliev},
title = {Minimization of a smooth function on the boundary of an outer generalized spherical segment},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {22--33},
publisher = {mathdoc},
number = {87},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/}
}
TY - JOUR AU - A. M. Dulliev TI - Minimization of a smooth function on the boundary of an outer generalized spherical segment JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 22 EP - 33 IS - 87 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/ LA - ru ID - VTGU_2024_87_a2 ER -
%0 Journal Article %A A. M. Dulliev %T Minimization of a smooth function on the boundary of an outer generalized spherical segment %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2024 %P 22-33 %N 87 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/ %G ru %F VTGU_2024_87_a2
A. M. Dulliev. Minimization of a smooth function on the boundary of an outer generalized spherical segment. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 22-33. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a2/