Nonlinear oscillations of a current-carrying string in a magnetic field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 163-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear properties of a string must be taken into account when creating string systems that are used in transducers and musical instruments. The forced oscillations of an electrically conductive string in a magnetic field are described by a nonlinear integro-differential equation. The amplitude-frequency characteristics of nonlinear resonances of the first and second orders are obtained. The damping factor of the first-mode oscillations is determined from the optimal coincidence of the experimental and theoretical amplitude-frequency characteristic graphs. The experimental amplitude-frequency characteristics for the first-order resonance is obtained using a laboratory setup with a copper string 0.4 mm in diameter and 0.57 m long, having a certain initial tension. The cumulative damping factor of the first mode is obtained, which takes into account all the dissipative factors of a real string system. Low-frequency thermoparametric oscillations of the second mode are observed in experiments with a string. It follows from the analysis of the Mathieu equation that parametric resonance arises even at very low amplitudes of the thermal tension of a string, and it must be taken into account in the frequency analysis of oscillations of string systems.
Keywords: vibrating string transducers, magnetic force, parametric resonance.
@article{VTGU_2024_87_a12,
     author = {A. K. Tomilin and I. S. Konovalenko and I. S. Konovalenko},
     title = {Nonlinear oscillations of a current-carrying string in a magnetic field},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {163--174},
     year = {2024},
     number = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a12/}
}
TY  - JOUR
AU  - A. K. Tomilin
AU  - I. S. Konovalenko
AU  - I. S. Konovalenko
TI  - Nonlinear oscillations of a current-carrying string in a magnetic field
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 163
EP  - 174
IS  - 87
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a12/
LA  - ru
ID  - VTGU_2024_87_a12
ER  - 
%0 Journal Article
%A A. K. Tomilin
%A I. S. Konovalenko
%A I. S. Konovalenko
%T Nonlinear oscillations of a current-carrying string in a magnetic field
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 163-174
%N 87
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a12/
%G ru
%F VTGU_2024_87_a12
A. K. Tomilin; I. S. Konovalenko; I. S. Konovalenko. Nonlinear oscillations of a current-carrying string in a magnetic field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 163-174. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a12/

[1] Ash Zh., Andre P., Bofron Zh., Degut P., Zhuveno K., Zelbshtein U., Kretinon B., Livroze P., Mazeran A., Merigu Zh., Peiro P., Pike A., Prizhan Zh.-K., Syunyash M., Takyusel Zh., Fulete Zh., Sharne Zh., Shon Zh.-P., Datchiki izmeritelnykh sistem, per. s fr., v. 1, Mir, M., 1992, 280 pp.

[2] Krupenin V.L., “K opisaniyu dinamicheskikh effektov, soprovozhdayuschikh kolebaniya strun vblizi odnotavrovykh ogranichitelei”, Doklady akademii nauk, 388:3 (2003), 3138

[3] Krupenin V.L., “K raschetu rezonansnykh kolebanii gibkoi niti, vzaimodeistvuyuschei s tochechnym ogranichitelem khoda”, Problemy mashinostroeniya i nadezhnosti mashin, 1992, no. 2, 29–35

[4] Krupenin V.L., “Vibratsiya struny, raspolozhennoi mezhdu protyazhennym i tochechnym ogranichitelyami”, Problemy mashinostroeniya i nadezhnosti mashin, 2017, no. 2, 1322

[5] Tomilin A.K., Kurilskaya N.F., “Kolebaniya elektroprovodyaschei struny v nestatsionar nom magnitnom pole s uchetom dvukh nelineinykh faktorov”, Sibirskii zhurnal industrialnoi matematiki, 20:4(72) (2017), 61–66 | DOI | MR | Zbl

[6] Tomilin A.K., Kolebaniya elektromekhanicheskikh sistem s raspredelennymi parametrami, VKGTU, Ust-Kamenogorsk, 2004, 272 pp.

[7] Levitskii N.I., Kolebaniya v mekhanizmakh, Nauka, M., 1988, 336 pp.

[8] Gulyaev V.I., Bazhenov V.A., Popov S.L., Prikladnye zadachi teorii nelineinykh mekhanicheskikh kolebanii, Vyssh. shkola, M., 1989, 383 pp.

[9] Magnus K., Kolebaniya: vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.

[10] Biderman V.L., Teoriya mekhanicheskikh kolebanii, Vyssh. shkola, M., 1980, 408 pp.

[11] Uvarov D.G., Petrov A.A., “Parametricheskie kolebaniya struny”, Trudy TsNII im. akad. A.N. Krylova, 52(336):2 (2010), 187–192

[12] Alifov A.A., “Avtoparametricheskie kolebaniya pri zapazdyvaniyakh v silakh uprugosti i treniya”, Problemy mashinostroeniya i nadezhnosti mashin, 2021, no. 2, 9–16 | DOI

[13] Zeilikovich I.S., Nikitin A.V., Vasilevich A.E., “Vozbuzhdenie i registratsiya nelineinogo rezonansa kolebanii pruzhinnogo mayatnika s ispolzovaniem elektromagnitnoi induktsii”, Zhurnal tekhnicheskoi fiziki, 90:1 (2020), 5–10 | DOI

[14] Alyushin Yu.A., “Energeticheskaya osnova rezonansa v uprugikh telakh”, Fizicheskaya mezomekhanika, 22:5 (2019), 42–53

[15] Shtukin L.V., Berinskii I.E., Indeitsev D.A., Morozov N.F., Skubov D.Yu., “Elektromekhanicheskie modeli nanorezonatorov”, Fizicheskaya mezomekhanika, 19:1 (2016), 24–30

[16] Potapov A.I., Stupenin V.V., “Termoparametricheskoe vozbuzhdenie nelineinykh kolebanii struny”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1985, no. 5, 142146

[17] Potapov A.I., Stupenin V.V., “Termoparametricheskaya destabilizatsiya tokonesuschego sterzhnya”, Prikladnaya mekhanika, 24:12 (1988), 100–104 | Zbl

[18] Grabovskii M.A., Mlodzeevskii A.B., Telesnin R.V., Shaskolskaya M.P., Yakovlev I.A., Lektsionnye demonstratsii po fizike, Nauka, M., 1972, 639 pp.