Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 135-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a dynamic analysis of a two-mass mechanical system is performed. The aim of this work is to study the effect of the inertial forces of bodies in relative motion within the mechanical system on the motion of this system in a dissipative medium with linear viscous resistance to the motion of one of its bodies (a reference body). The analysis is based on the decomposition of the absolute impulse of the mechanical system into portable and relative components. The resolution shows that the relative inertia forces significantly affect the absolute motion of the mechanical system in a dissipative medium. The equation for such motion is presented, where the total mass of the mechanical system is conditionally concentrated in the reference body. The obtained results and conclusions can be used to solve the problem of two gravitating bodies, one of which is located in a dissipative medium, with the center of mass of the bodies moving relative to the center of the inertial domain. The results are also applicable to three-mass mechanical systems of the inertioid type.
Keywords: two-mass mechanical system, momentum and inertial forces, dissipative parameter, dissipative loss angle.
Mots-clés : inertial domain
@article{VTGU_2024_87_a10,
     author = {S. V. Savel'kaev},
     title = {Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {135--149},
     year = {2024},
     number = {87},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a10/}
}
TY  - JOUR
AU  - S. V. Savel'kaev
TI  - Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2024
SP  - 135
EP  - 149
IS  - 87
UR  - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a10/
LA  - ru
ID  - VTGU_2024_87_a10
ER  - 
%0 Journal Article
%A S. V. Savel'kaev
%T Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2024
%P 135-149
%N 87
%U http://geodesic.mathdoc.fr/item/VTGU_2024_87_a10/
%G ru
%F VTGU_2024_87_a10
S. V. Savel'kaev. Dynamic analysis of a two-mass mechanical system in a dissipative medium with allowance for inertial forces. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 135-149. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a10/

[1] Nikitin N.N., Kurs teoreticheskoi mekhaniki, Vyssh. shkola, M., 1990, 607 pp.

[2] Savelev I.V., Osnovy teoreticheskoi fiziki. Mekhanika i elektrodinamika, v. 1, Nauka, M., 1991, 496 pp. | MR

[3] Savelkaev S.V., “Effekt nezavisimosti velichiny smescheniya tsentra mass mekhanicheskoi sistemy ot dissipativnosti vneshnei sredy”, Mekhanika mashin, mekhanizmov i materialov, 2011, no. 4 (17), 42–48

[4] Savelkaev S.V., Mekhanika. Korrelyatsionnaya mekhanika mekhanicheskikh sistem, preprint, SGGA, Novosibirsk, 2013, 67 pp.

[5] Tolchin V.N., Inertsioid. Sily inertsii kak istochnik postupatelnogo dvizheniya, Kn. izd-vo, Perm, 1977, 100 pp.

[6] Egorov A.G., Zakharova O.S., “Energeticheski optimalnoe dvizhenie vibratora v srede s nasledstvennym zakonom soprotivleniya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2015, no. 3, 168–176 | DOI | Zbl

[7] Shipov G.I., Teoriya fizicheskogo vakuuma, NT-Tsentr, M., 1993, 362 pp.

[8] Chernousko F.L., “Optimalnye periodicheskie dvizheniya dvukhmassovoi sistemy v so protivlyayuscheisya srede”, Prikladnaya matematika i mekhanika, 72:2 (2008), 202–215 | MR | Zbl