About the properties of spaces $C_p(X)$ close to Frechet–Urysohn property
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 5-10
Cet article a éte moissonné depuis la source Math-Net.Ru
By analogy with the Fréchet-Urysohn property, the properties of $n$-Fréchet-Urysohn and $\omega$-Fréchet-Urysohn spaces of the spaces $C_p(X)$ are introduced into consideration. The connection between these properties and the properties $\gamma_n'$ and $\gamma_\omega'$ of the space $X$ is studied. In particular, it is established that the property $\gamma_\omega'$ of the space $X$ is equivalent the $\omega$-Frechet-Urysohn property of the space $C_p(X)$, and also that from the $n$-Frechet-Urysohn property it follows $\gamma_n'$.
Keywords:
$\omega$-cover, $\gamma$-property, Gerlits-Nagy property, Frechet Urysohn property, $\gamma_k'$-property, Lindelof property
Mots-clés : $\omega$-Fréchet-Urysohn, $n$-Fréchet-Urysohn.
Mots-clés : $\omega$-Fréchet-Urysohn, $n$-Fréchet-Urysohn.
@article{VTGU_2024_87_a0,
author = {O. O. Badmaev},
title = {About the properties of spaces $C_p(X)$ close to {Frechet{\textendash}Urysohn} property},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--10},
year = {2024},
number = {87},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/}
}
TY - JOUR AU - O. O. Badmaev TI - About the properties of spaces $C_p(X)$ close to Frechet–Urysohn property JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 5 EP - 10 IS - 87 UR - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/ LA - ru ID - VTGU_2024_87_a0 ER -
O. O. Badmaev. About the properties of spaces $C_p(X)$ close to Frechet–Urysohn property. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 5-10. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/
[1] Badmaev O.O., “Ob additivnoi modifikatsii $\gamma$-svoistva”, Vestnik Tomskogo gosudar stvennogo universiteta. Matematika i mekhanika, 2021, no. 74, 5–11 | DOI | MR | Zbl
[2] Arkhangelskii A.V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989, 222 pp.
[3] Osipov A.V., “Projective versions of the properties in the Scheepers Diagram”, Topology and its Applications, 278 (2020), 107232 | DOI | MR | Zbl