About the properties of spaces $C_p(X)$ close to Frechet--Urysohn property
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 5-10
Voir la notice de l'article provenant de la source Math-Net.Ru
By analogy with the Fréchet-Urysohn property, the properties of $n$-Fréchet-Urysohn and $\omega$-Fréchet-Urysohn spaces of the spaces $C_p(X)$ are introduced into consideration. The connection between these properties and the properties $\gamma_n'$ and $\gamma_\omega'$ of the space $X$ is studied. In particular, it is established that the property $\gamma_\omega'$ of the space $X$ is equivalent the $\omega$-Frechet-Urysohn property of the space $C_p(X)$, and also that from the $n$-Frechet-Urysohn property it follows $\gamma_n'$.
Keywords:
$\omega$-cover, $\gamma$-property, Gerlits-Nagy property, Frechet Urysohn property, $\gamma_k'$-property, Lindelof property, $\omega$-Fréchet-Urysohn, $n$-Fréchet-Urysohn.
@article{VTGU_2024_87_a0,
author = {O. O. Badmaev},
title = {About the properties of spaces $C_p(X)$ close to {Frechet--Urysohn} property},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--10},
publisher = {mathdoc},
number = {87},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/}
}
TY - JOUR AU - O. O. Badmaev TI - About the properties of spaces $C_p(X)$ close to Frechet--Urysohn property JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2024 SP - 5 EP - 10 IS - 87 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/ LA - ru ID - VTGU_2024_87_a0 ER -
O. O. Badmaev. About the properties of spaces $C_p(X)$ close to Frechet--Urysohn property. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 87 (2024), pp. 5-10. http://geodesic.mathdoc.fr/item/VTGU_2024_87_a0/