@article{VTGU_2023_86_a7,
author = {S. A. Rashkovskiy},
title = {Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {104--119},
year = {2023},
number = {86},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/}
}
TY - JOUR AU - S. A. Rashkovskiy TI - Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2023 SP - 104 EP - 119 IS - 86 UR - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/ LA - ru ID - VTGU_2023_86_a7 ER -
%0 Journal Article %A S. A. Rashkovskiy %T Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2023 %P 104-119 %N 86 %U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/ %G ru %F VTGU_2023_86_a7
S. A. Rashkovskiy. Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 104-119. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/
[1] Zarko V.E., Gusachenko L.K., “Critical review of phenomenological models for studying transient combustion of solid propellants”, International Journal of Spray and Combustion Dynamics, 2:2 (2010), 151–167 | DOI
[2] Novozhilov B.V., Nestatsionarnoe gorenie tverdykh raketnykh topliv, Nauka, M., 1973, 176 pp.
[3] Zeldovich Ya.B., Leipunskii O.I., Librovich V.B., Teoriya nestatsionarnogo goreniya porokha, Nauka, M., 1975, 132 pp.
[4] Gusachenko L.K., Zarko V.E., “Analiz nestatsionarnykh modelei goreniya tverdykh topliv (obzor)”, Fizika goreniya i vzryva, 44:1 (2008), 35–48
[5] Gusachenko L.K., “Fenomenologicheskaya model nestatsionarnogo goreniya TT s nakopleniem komponenta na poverkhnosti”, Fizika goreniya i vzryva, 25:2 (1989), 38–42
[6] Rashkovskii S.A., “Statisticheskoe modelirovanie aglomeratsii alyuminiya pri gorenii geterogennykh kondensirovannykh smesei”, Fizika goreniya i vzryva, 41:2 (2005), 62–74
[7] Rashkovskiy S.A., “Direct numerical simulation of boron particle agglomeration in combustion of boron-containing solid propellants”, Combustion Science and Technology., 189:8 (2017), 1277–1293 | DOI
[8] Glotov O.G., Yagodnikov D.A., Vorobev V.S., Zarko V.E., Simonenko V.N., “Vosplamenenie, gorenie i aglomeratsiya kapsulirovannykh chastits alyuminiya v sostave smesevogo tverdogo topliva. II. Eksperimentalnye issledovaniya aglomeratsii”, Fizika goreniya i vzryva, 43:3 (2007), 83–97
[9] Culick F.E.C., Unsteady Motions in Combustion Chambers for Propulsion Systems, RTO AGARD RTO-AG-AVT-039, 2006
[10] Gallier S., Godfroy F., “Aluminum combustion driven instabilities in solid rocket motors”, Journal of propulsion and power, 25:2 (2009), 509–521 | DOI