Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 104-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The unsteady combustion of solid propellants with the formation of condensed products accumulating on the burning surface in the form of a skeleton layer is considered. The model of the process takes into account the thermal inertia of the skeleton layer and the variation in its mass when burning. It is shown that during the unsteady combustion of such propellants, the instantaneous composition of both gaseous and condensed products leaving the burning surface changes and becomes different from that during the stationary combustion; thus, it differs from the initial composition of the propellant. This new effect, which was not previously described in the literature, can lead to additional destabilization of the process in a solid propellant rocket motor combustion chamber and to the development of acoustic instability. Within the framework of the presented model of unsteady combustion, the component of the acoustic conductivity of the solid propellant burning zone associated with the new effect is determined.
Keywords: composite solid propellant, unsteady combustion, condensed combustion products, skeleton layer, agglomeration, inhomogeneity of combustion products, mathematical modeling.
@article{VTGU_2023_86_a7,
     author = {S. A. Rashkovskiy},
     title = {Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {104--119},
     year = {2023},
     number = {86},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/}
}
TY  - JOUR
AU  - S. A. Rashkovskiy
TI  - Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2023
SP  - 104
EP  - 119
IS  - 86
UR  - http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/
LA  - ru
ID  - VTGU_2023_86_a7
ER  - 
%0 Journal Article
%A S. A. Rashkovskiy
%T Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2023
%P 104-119
%N 86
%U http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/
%G ru
%F VTGU_2023_86_a7
S. A. Rashkovskiy. Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 86 (2023), pp. 104-119. http://geodesic.mathdoc.fr/item/VTGU_2023_86_a7/

[1] Zarko V.E., Gusachenko L.K., “Critical review of phenomenological models for studying transient combustion of solid propellants”, International Journal of Spray and Combustion Dynamics, 2:2 (2010), 151–167 | DOI

[2] Novozhilov B.V., Nestatsionarnoe gorenie tverdykh raketnykh topliv, Nauka, M., 1973, 176 pp.

[3] Zeldovich Ya.B., Leipunskii O.I., Librovich V.B., Teoriya nestatsionarnogo goreniya porokha, Nauka, M., 1975, 132 pp.

[4] Gusachenko L.K., Zarko V.E., “Analiz nestatsionarnykh modelei goreniya tverdykh topliv (obzor)”, Fizika goreniya i vzryva, 44:1 (2008), 35–48

[5] Gusachenko L.K., “Fenomenologicheskaya model nestatsionarnogo goreniya TT s nakopleniem komponenta na poverkhnosti”, Fizika goreniya i vzryva, 25:2 (1989), 38–42

[6] Rashkovskii S.A., “Statisticheskoe modelirovanie aglomeratsii alyuminiya pri gorenii geterogennykh kondensirovannykh smesei”, Fizika goreniya i vzryva, 41:2 (2005), 62–74

[7] Rashkovskiy S.A., “Direct numerical simulation of boron particle agglomeration in combustion of boron-containing solid propellants”, Combustion Science and Technology., 189:8 (2017), 1277–1293 | DOI

[8] Glotov O.G., Yagodnikov D.A., Vorobev V.S., Zarko V.E., Simonenko V.N., “Vosplamenenie, gorenie i aglomeratsiya kapsulirovannykh chastits alyuminiya v sostave smesevogo tverdogo topliva. II. Eksperimentalnye issledovaniya aglomeratsii”, Fizika goreniya i vzryva, 43:3 (2007), 83–97

[9] Culick F.E.C., Unsteady Motions in Combustion Chambers for Propulsion Systems, RTO AGARD RTO-AG-AVT-039, 2006

[10] Gallier S., Godfroy F., “Aluminum combustion driven instabilities in solid rocket motors”, Journal of propulsion and power, 25:2 (2009), 509–521 | DOI